

International Centre for Radio Astronomy Research

## An MWA/ASKAP/ eROSITA study of the Magellanic Clouds

Lister Staveley-Smith (ICRAR/UWA/CAASTRO)





Government of Western Australia Department of the Premier and Cabinet Office of Science



### New southern radio surveys



Galactic and Extragalactic All-sky MWA survey http://www.mwatelescope.org/science/gleam-survey

EMU (Ray Norris talk)

ASKAP-FLASH First Large Absorption Survey in Hill Galactic ASKAP survey

https://sites.google.com/site/gaskapproject/home

# WALLABY

Widefield ASKAP L-band Legacy All-sky Blind Survey https://wallaby-survey.org

FLASH Vanessa Moss talk



GAS



#### AU/eROSITA\_DE MoU partners



# Understanding mechanical feedback and the stellar-ISM connection in the MCs also needs hot gas

Stars and emission-line gas (Smith) - CTIO

HI (Kim et al. 2003) - ATCA/PKS





#### **Murchison Widefield Array**







Australian Government

THE UNIVERSITY OF

MELBOURNE









WESTERN SYDNEY UNIVERSITY UWM KAGOSHIMA UNIVERSITY CSIRO WIDEFIELD ARRAY 熊本大学 WESTERN AUSTRALIA **TOHOKU** Kumamoto University **Curtin University** TE WHARE WĀNANGA O TE ŪPOKO O TE IKA A MĀUI THE UNIVERSITY OF SYDNEY NA VICTORIA









## MWA Key science

#### Bowman et al., 2013.



#### The Epoch of Reionisation



#### Transient & variable universe



#### Galactic & extragalactic astrophysics





Hurley-Walker et al. (2017)



## **Observing & archive**

- 100+ publications
- 80+ TAC-approved projects since 2013-B
- ~9+ PB of data
   publicly available
   (end 2017)
- Current archive: ~18 PB including ephemeral data





#### Murchison Widefield Array ASVO Pilot

Virtual observatory compatible metadata and downloadable public visibility data from the MWA Archive.









Murchison Widefield Array ASVO Pilot



# Phase 1 LMC/SMC reductions

### **Bi-Qing For + GLEAM team (2018):**

- GLEAM year 1 drift scans (Wayth et al. 2015)
- Frequencies: 72 231 MHz (5 bands)
- Integration: 40 80 min per pixel
- Weighting: robust = 0 (*cf.* robust = -1 for EG cat; Hurley-Walker et al. 2017)
  - Increases brightness sensitivity
  - Decreases resolution (3.3 arcmin v 2.9 arcmin at 200 MHz)
- Flux density accuracy: 9% 13%





# ICRAR

### **Global spectra**





### **GLEAM-ATCA** spectral index images

SMC

LMC



## Radio-FIR correlation (non-AGN)



CRA

Local Volume galaxies: Shao et al (2018)



## Radio and FIR: non-linear with SFR

 $L_{\rm FIR} \propto {
m SFR}^{1.20\pm0.08}$ 

 $L_{1.4\mathrm{GHz}} \propto \mathrm{SFR}^{1.26 \pm 0.09}$ 





## Results (For et al. 2018)

- Magellanic Cloud radio emission dominated by nonthermal emission at low frequencies:
  - LMC:  $\alpha = -0.47 \pm 0.02$
  - SMC:  $\alpha = -0.81 \pm 0.02$
  - No spectral turnover
  - Strong correlation with gas and dust morphology
- Brown et al. 150 MHz GMRT calibration:
  - LMC global star-formation rate: 0.08 0.16 M<sub>☉</sub> yr<sup>-1</sup>
  - SMC global star-formation rate: 0.02 0.04 M<sub>☉</sub> yr<sup>-1</sup>



#### Past, present, future

- Phase 1: 2013-2016
  - 128 antennas, 2.5 km max baseline
- Phase 2: 2017+
  - Expanded with additional 128 antennas
  - 72 closely spaced in 2x hexagonal grids approx 100m size
  - 56 new long baseline antennas to double max baseline to 5km



## MWA phase II – long baselines

WIDEFIELD ARRAY





### Phase 1 vs Phase 2 extended

10 MHz MFS u,v coverage @ 150 MHz.



I/tmp/Long\_Baseline\_8cc\_0.01h.u 0.1489 GHz





## Phase II build expansion: complete



**Ben McKinley** 



## eRASS and MWA/ASKAP etc

### **Approved eROSITA-CAASTRO Science Project**

Supernova remnants, superbubbles, and the global structure of the interstellar medium in the Magellanic Clouds:

- DE: Sasaki, Haberl, Kerp
- AU: Staveley-Smith, Filipovic, Koribalski
- Other: Kavanagh, Points

Investigate the relation of cold gas, hot gas and cosmic rays in MCs to investigate evolution of star-formation regions, superbubbles and SNRs and their impact on the evolution of the MCs.



#### **Magellanic Clouds**

. High SFR/M<sub>\*</sub> N<sub>HMXB</sub>>N<sub>LMXB</sub> . D=50-60 kpc Sensitivity(XMM) L<sub>Xmin</sub>~10<sup>33</sup>erg/s . Low metallicity





#### Shtykovskiy & Gilfanov (2005)



LMC: ROSAT-PSPC Chu and Snowden (2001) eRASS cadence (Merloni et al. 2012)



| 8 | 1 | 10 | 13 | 20 | 35 | 63 | 119 | 232 | 457 |
|---|---|----|----|----|----|----|-----|-----|-----|



## eRASS/radio science

### Thermodynamics

- Gas pressure and energy density: hot gas, cool gas, CR, magnetic fields
- Momentum outflow
- Kinematics

### **Star formation**

- Self-propagating star formation
- Supernova remnants
- Metallicity
- Galactic fountain





## A hot Galactic halo?

*"The distribution, spacial extent, and mass of this warm-hot gas provide important constraints to models of galaxy formation and the accretion and feedback mechanisms"* (Gupta et al. 2017)

| Hot Milky Way halo | Gatuzz & Churazov<br>(2017)           | Gupta et al.<br>(2017)                   |
|--------------------|---------------------------------------|------------------------------------------|
| Column density     | 1.3×10 <sup>19</sup> cm <sup>-2</sup> | 2×10 <sup>20</sup> cm <sup>-2</sup>      |
| Mass               | not constrained                       | $3-10\!	imes\!10^{10}~{ m M}_{\bigodot}$ |
| Size               | not constrained                       | 80 – 170 kpc                             |





# Forthcoming radio observations

- Initial MWA phase 2 observations (G0041) complete:
  - 127 hrs; Oct 7 Nov 30, 2017
  - 1.5 arcmin resolution @ 200 MHz
- Galactic ASKAP project
  - SMC already observed in HI (McClure-Griffiths et al)
- ASKAP EMU project
  - Test LMC and SMC observations (Filipovic, Norris et al.)
- SKA-low potential:
  - 10 arcsec resolution at 200 MHz
  - Scan angle specification  $\pm 45$  deg makes LMC observations just possible at transit; SMC difficult

### SMC in HI - peak intensity



# ICRAR

# Forthcoming radio observations

- Initial MWA phase 2 observations (G0041) complete:
  - 127 hrs; Oct 7 Nov 30, 2017
  - 1.5 arcmin resolution @ 200 MHz
- Galactic ASKAP project
  - SMC already observed in HI (McClure-Griffiths et al)
- ASKAP EMU project
  - Test LMC and SMC observations (Filipovic, Norris et al.)
- SKA-low potential:
  - 10 arcsec resolution at 200 MHz
  - Scan angle specification  $\pm 45$  deg makes LMC observations just possible at transit; SMC difficult



#### SMC at 1 GHz: ASKAP-12

Obs duration was ~9 hours Bandwidth 240MHz Tsys/eff = 75K Naturally weighted Expect rms = 32uJy/bm.

Actual 50uJy/bm in the Stokes-V 60uJy/bm in the Stokes-I Used robustness of -0.5

Image by Wasim Raja

#### Portion of the SMC (continuum)



# ICRAR

# Forthcoming radio observations

- Initial MWA phase 2 observations (G0041) complete:
  - 127 hrs; Oct 7 Nov 30, 2017
  - 1.5 arcmin resolution @ 200 MHz
- Galactic ASKAP project
  - SMC already observed in HI (McClure-Griffiths et al)
- ASKAP EMU project
  - Test LMC and SMC observations (Filipovic, Norris et al.)
- SKA-low potential:
  - 10 arcsec resolution at 200 MHz
  - Scan angle specification  $\pm 45$  deg makes LMC observations just possible at transit; SMC difficult

SMC

123, 181, 227 MHz, three-colour images (For et al.2017)