ART-XC telescope update

Mikhail Pavlinsky (IKI, Moscow)
on behalf of the ART-XC / SRG team

eROSITA Consortium meeting, Garching 23 - 26/4, 2018

Last SRG news:

April 3, 2018
FM radiocomplex was delivered to Lavochkin Association from RKS

April 19, 2018 radiocomplex successfully passed entrance control at LA

 ART-XC layout

ART-XC: X-ray mirror systems MSFC/NASA

1. Number of mirror systems
2. Number of nested mirror shells
3. Form of shell
4. FOV with detector $\varnothing 28.56 \mathrm{~mm}$
5. On-axis angular resolution, HPD
6. Focal length
7. Length of shell
8. Diameter of mirror shells
9. Material of shells
10. Mirror coating materials

7
28
Wolter-I
$\sim 0.3 \mathrm{deg}^{2}$
$\leq 35 "$
2700 mm
580 mm
49-145 mm
$\mathrm{Ni} / \mathrm{Co}$
Iridium

ART-XC FM mirror system backside view

ART-XC: DSSD CdTe detector IKI RAS

1. CdTe manufacturer ACRORAD
2. Dimensions
3. Working area
4. Energy range
5. Number of strips
6. Strip pitch
7. Be entrance window
8. ASIC, 2 pcs.
9. Dead time
10. Working temperature
11. Energy resolution $\leq 8.5 \%$ @ 14 keV

回以冷

(2) 14 N

September 2017 - April 2018
4 runs of ART-XC and S/C control system (BKU) software tests

January 29 - 30, 2018 test of compatibilities of FM ART-XC and S/C reaction wheels \Rightarrow upper limit is 1000 rotations per minute (strong requirement)

Calibration at IKI test facility mirror system + DSSD CdTe telescope ART-XC / SRG

(-) TMT N N
 $\stackrel{\square}{\square}$

IKI test facility: pipe $60 \mathrm{~m}+$ chamber 4 m
X - ray source - mirror system distance: 61 m
Residual pressure in pipe and chamber: $\leq 4 \times 10^{-5}$ bar
X - ray tubes: $\mathrm{Cr}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Ag}, 9-50 \mathrm{kV}$
Al filters, 28 - $448 \mu \mathrm{~m}$
Two reference detectors - XR-100T-CdTe and XR-100SDD (Amptek)
Two hexapods

Mirror system + mylar, front side

Mirror system backside

URD $_{29}$, XR-100T-CdTe and XR-100SDD, FWHM(E)

URD_{29} background, 3-100 keV

 URD $_{29}$, DSSD CdTe strips: 48x, 48y strips pitch: 0.595 mm Be window: $\varnothing 30.0 \mathrm{~mm}$ Working area under Be: $\mathrm{S}=6.896 \mathrm{~cm}^{2}$
$\mathrm{D}_{\text {int }}$ of multilayer collimator : $\varnothing 32 \mathrm{~mm}$

The integrated spectrum over an aperture $\varnothing 28.56 \mathrm{~mm}$, when the detector $U R D_{29}$ is illuminated through the MS by an X-ray tube with a Cr anode (18 kV , $0.5 \mu \mathrm{~A}$, Al filter $28 \mu \mathrm{~m})$. The solid area shows the peak of the Cr lines in the range $4.2-6.8 \mathrm{keV}$.

$\mathrm{MS}_{6}+\mathrm{URD}_{29}, \mathrm{Cr}(18 \mathrm{kV}, 0.5 \mu \mathrm{~A}), \mathrm{Al} 28 \mu \mathrm{~m}, 4.2$ - $6.8 \mathrm{keV}, 61 \mathrm{~m}$

Logarithmic scale

10% of the maximum

$\mathrm{MS}_{6}+\mathrm{URD}_{29}, \mathrm{Cr}(18 \mathrm{kV}, 0.5 \mu \mathrm{~A}), \mathrm{Al} 28 \mu \mathrm{~m}, 4.2$ - $6.8 \mathrm{keV}, 61 \mathrm{~m}$

$\mathrm{MS}_{6}+\mathrm{URD}_{29}, \mathrm{D}_{2}$ encircled fraction, $\mathrm{R}=10.139 \operatorname{arcmin}, 61 \mathrm{~m}$

Left - detector image in the $4-18 \mathrm{keV}$ band at direct illumination of URD ${ }_{29}$ (linear color scale); Right - image of URD_{29} illuminated through MS_{6} (logarithmic color scale, cutoff at 10% of maximum value). The green dashed circle marks 28.56 mm diameter equal to $\sim 34.76^{\prime}$ for the 61 meter distance to the source.

Model mirror system+mylar, effective area on-axis, $D=28.56 \mathrm{~mm}$

Left: $\mathrm{Sp}_{\text {urd }}$ - integrated spectrum of events for direct (without MS) illumination of URD_{29} in units of $\mathrm{cts} \mathrm{s}^{-1}$ $\mathrm{cm}^{-2} \mathrm{keV}^{-1}$ (pink); $\mathrm{Sp}_{\text {Ms }}$ - integrated spectrum of URD_{29} illuminated through MS_{6} within diameter of 28.56 mm (green); also shown here the photoabsorption transparency of the $28 \mu \mathrm{~m}$ thick Al filter (crimson). At energies above 19 keV in $\mathrm{Sp}_{\text {Ms }}$ spectrum there is the pileup effect observed.
Right: $\mathrm{Sp}_{\mathrm{MS}}$ (green), $\mathrm{Sp}_{\text {URD }} \times \mathrm{MS}_{\text {mod }}$ - direct illumination spectrum multiplied by the mathematical model of the MS effective area $\mathrm{MS}_{\text {mod }}(r e d)$ and $\mathrm{Sp}_{\text {pileup }}$ - mathematical model spectrum describing the pileup effect, which relates to a small fraction $\sim 0.08 \%$ of the total number of events (grey).

Thank you

