Weiwei Xu

Thomas H. Reiprich, Florian Pacaud, Miriam E. Ramos-Ceja

 Motivation 	 Simulation. 	Observation.
	 Simulation. 	Candidates.
	Detection.	Identification
	Classification	

Motivation

- **Tension** between primary CMB and cluster counts (Planck collaboration 2014)
- **Questions**: are cluster samples detected incomplete?
- **This work**: with the RASS data, search for very extended X-ray clusters that might be missed in previous works (e.g. MCXC, Piffaretti+11)

Fig. 11. 2D $\Omega_{\rm m}$ - σ_8 likelihood contours for the analysis with *Planck* CMB only (red); *Planck* SZ + BAO + BBN (blue) with (1 - b) in [0.7, 1].

Fig. 7: Comparison of constraints from the CMB to those from the cluster counts in the $(\Omega m, \sigma 8)$ -plane.

- Simulation.
- Observation.
 - Candidates.
- Classification

- Detection.
 - Identification

Setup for Simulation

1. **AGNs:** brightness distribution from Moretti et al. 2003, and distributed over the simulation.

2. **Clusters:** spherically symmetric β model of the surface brightness of galaxy cluster (Cavaliere & Fusco-Femiano 1976).

$$S_{\rm X}(r) \propto \left[1 + \left(\frac{r}{r_{\rm c}}\right)^2\right]^{-3\beta + 1/2}$$

3. Controlled cluster characteristics:									
β	0.4 0.55 0.66 0.7				7				
r _c (pixel)	2	3	4	5	6	7	8	16	32
flux _{cluster} (10 ⁻¹¹ erg s ⁻¹ cm ⁻²)	0.	.1	0.	3	0.	5	1	.0	5.0

- Simulation. Motivation Observation. Simulation. Candidates. Detection. Identification
 - Classification

Detection

Motivation	•	Simulati
		~ `

ulation. Simulation.

Detection.

- Observation. • Candidates.
 - Identification

Classification

Classification

Maximum likelihood fitting (From Mariam E. Ramos-Ceja):

1. point-like and extended source modelling; 2. important parameters: extent likelihood and extent

minimum extent likelihood	minimum extent	purity	completeness	purity +completenes
25	35	0.9650	0.8357	1.8007
25	45	0.9661	0.8355	1.8015
25	40	0.9655	0.8355	1.8010
30	40	0.9822	0.8147	1.7968
20	40	0.9400	0.8653	1.8053

balance between sample completeness and purity

extent-likelihood > 25 extent > 40

Iation.
•
Simulation.

Detection.

Classification

- Observation.
 Candidates.
 - Identification

Classification

Maximum likelihood fitting (From Mariam E. Ramos-Ceja):

1. point-like and extended source modelling; 2. important parameters: extent likelihood and extent

minimum extent likelihood	minimum extent	purity	completeness	purity +completenes	halance between sample
25	35	0.9650	0.8357	1.8007	completeness and purity
25	45	0.9661	0.8355	1.8015	
25	40	0.9655	0.8355	1.8010	
30	40	0.9822	0.8147	1.7968	extent-likelinood > 25
20	40	0.9400	0.8653	1.8053	exient > 40

- Simulation. Motivation
 - Simulation.
 - Detection.
- Observation. Candidates.
 - Identification
- Classification

extent likelihood

Motivation · Simulation. · Obs

Simulation. Detection.

extent likelihood

- Observation.
 - Candidates.
- Classification

Candidates

Simulation. Motivation Observation. Simulation. Candidates. Detection. Identification

Classification

Motivation
 Simulation.
 Simulation.
 Observation.
 Candidates.
 Detection.
 Identification

- Motivation · Sin
 - Simulation.
 - Simulation. Detection.
- Observation. • Candidates.
 - Identification
- Classification
- · Ident

New Candidates: Examples

Q1: are they real galaxy clusters?

Example 1: count rate = 0.16 counts/s, flux = 1.8×10^{-12} erg s⁻¹ cm⁻², extent = 55.67, extent likelihood = 71.23

- Motivation · Si
- Simulation. • Simulation.
 - Detection.
 - Classification
- Observation. • Candidates.
 - Identification

New Candidates: Examples

- Motivation · Simulation.
 - Simulation.
- Observation.
 Candidates.
 - Identification
- Detection.
 Classification
 - · Identi

New Candidates: Examples

Q1: are they real galaxy clusters?

ROSAT observation ima corrected by exposure in Dashed square is 20' x	age recondense	onstructed images of tour from this in shed square is 2	e from wavelet filmage 0' × 20'	ter SDSS obs	servation(20' × 20')	
0.000023 0.000032 0.000050	0.000084 0.000154	0.000293 0.000569	0.001125 0.002226			

Example 2: count rate = 0.26 counts/s, flux = 2.9×10^{-12} erg s⁻¹ cm⁻², extent = 91.75, extent likelihood = 60.31

- Motivation
- Simulation.
 - Simulation. Detection.
- Observation. Candidates.
 - Identification
- Classification

New Candidates: Examples

Simulation. • Simulation.

Classification

Detection.

- Observation.
- Candidates
 - Identification

Preliminary flux distribution of new candidates

Q2: if real, why are they not detected before?

Summary

- 1. We use an optimised source detection and classification algorithm to search for very extended galaxy clusters within the RASS data.
- 2. The algorithm include wavelet filtering, source extraction, maximum likelihood fitting and visual inspection in optical wavelengths.
- 3. We expect that this work will increase the number of X-ray galaxy clusters and provide a better understanding on the possible incompleteness of X-ray selected cluster samples.

Thank you for your attention!

Questions or comments are welcome!

Backup slides

- Simulation. Motivation
 - Simulation.
- Observation.
 - Candidates. Identification
- Classification
- Detection.

Exposure time problem

- Simulation. Motivation
 - Simulation.
- Observation.
 - Candidates. Identification
- Classification

- Detection.

Setup for Simulation

1. **AGNs:** brightness distribution from Moretti et al. 2003, and distributed over the simulation.

$$N(>S) = N_{S(H)} \left[\frac{(2 \times 10^{-15})^{\alpha_{1,s(H)}}}{S^{\alpha_{1,S(H)}} + S^{\alpha_{1,S(H)} - \alpha_{2,S(H)}}_{0,S}} \right] cgs$$

2. **Clusters:** spherically symmetric β model of the surface brightness of galaxy cluster (Cavaliere & Fusco-Femiano 1976).

$$S_{\rm X}(r) \propto \left[1 + \left(\frac{r}{r_{\rm c}}\right)^2\right]^{-3\beta + 1/2}$$

3. Other instrumental and background parameters: Exposure time: 450 s

N_H: 5.945×10²⁰ cm⁻² Background: 0.08 photon counts/pixel Poisson noise

4. Controlled cluster characteristics:

β	0.4	0.55	0.66	0.7
r _c (pixel)	2 3	4 5	6 7	8 16 32
flux _{cluster} (10 ⁻¹¹ erg s ⁻¹ cm ⁻²)	0.1	0.3	0.5	1.0 5.0

- Motivation · Simulation.
 - Simulation.
 - Detection.
- Candidates.

Observation.

- Identification
- Classification
- · Ide

One simulation example

AGNs

AGNs +clusters

AGN+clusters +bgd+poisson noise +ROSAT response

filtered image after erwavelet

detection of SExtractor

 $r_c = 5 \text{ pixel } (3.75'), \text{ flux}_{cluster} = 5 \times 10^{-12} \text{ erg s}^{-1} \text{ cm}^{-2}$

cyan circles (radius = $3.5 r_c$)

- Simulation.
- Observation. Candidates.
 - Identification
- Classification
- Detection.

Candidates in MCXC and PSZ2 catalogs:

- MCXC catalog: a Meta-Catalogue of X-ray detected Clusters of • galaxies, includes 1743 clusters (Piffaretti et al. 2011)
- PSZ2 catalog: the second Planck catalogue of Sunyaev-Zeldovich sources, includes 1653 clusters (Planck Collaboration et al. 2016)