X-rays from massive stars and clusters

Lidia Oskinova

Universität Potsdam

eROSITA @ AIP 2014

The evolution of (very) massive stars

Mass removal by wind
drives the evolution
OB → (short LBV) → WR
Winds are getting dense and more enriched
Wolf-Rayet (WR)
WN → WC → WO → SN

Massive stars emit X-rays (Einstein observatory 1978)

First X-ray sky exposure with Einstein IPC Harnden etal. 1979 (CygOB2), Seward etal. 1979 X-rays were predicted by Hoare (1975), Cassinelly & Olson (1978)

Seminal study Pallavicini etal. (1981): O and early B stars \rightarrow Correlation $L_x = 10^{-7} L_{bol}$ but no correlation with $v \sin i$

The spectra are soft, peculiar stars have harder spectra.

- Important confirmation: RASS (Berghoefer etal. 1997)
- Chandra and XMM-Newton observations (e.g. Moffat+ 2002,
- Oskinova 2005, Sana+ 2006, Wolk+ 2008, Townsley+ 2009, Gagne+

Examples of $L_X = 10^{-7} L_{bol}$ correlation

- The correlation is approximate
- It holds for O and early B stars, single and binaries
- Wolf-Rayet stars do not follow this correlation
- Stars later than B1-spectral type do not follow this correlation

03

WHY massive stars emit X-rays ?

Two leading theories

- Shocked stellar winds
- Hot coronae associated with surface magnetic field

Succesful model shall explain the $L_X = 10^{-7} L_{bol}$ correlation

Radiatively driven stellar winds are intrinsically unstable

Lucy & Solomon (1970), Radiative hydrodinamic X-ray: Feldmeier etal (1997)

<section-header><section-header><section-header><section-header><section-header><section-header>

Shocks also result from:

- Collision of streams
 in magnetically confined wind
- Collision of winds

in binaries

05

Wind shock model explains:

broad and blueshifted X-ray emission lines

(Cassinelli etal 2001, Kramer etal 2003, Oskinova etal 2006)

The model does not predict the correlation between $L_{\rm X}$ and $L_{\rm bol}$

NASA/EIT/W.Waldron, J.Cassinelli

Surface magnetic field

MacGregor & Cassinelli (2005), Cantiello & Braithwaite (2011)

The model:

Explains why the hottest X-ray plasma is close to the photosphere
 It predicts the dependence of B-field strength on L_{bol}
 It may explain L_x =10⁻⁷ L_{bol}

Two rival models of X-ray emission in massive stars

New data are needed to decide among the models:

- High-resolution spectra (XMM-Newton and Chandra)
- Comprehensive sample of stars across the HRD (eROSITA)

eROSITA and the evolution of massive stars

09

Look for the surprises in the hard band

eROSITA survey not only 2 dex deeper than RASS. All-sky survey in hard X-ray band

Variability in Fe complex γ Cas

- Magnetic stars and colliding wind binaries
- Some massive stars are hard in X-rays, but physical mechanisms are not known e.g: γ Cas type objects WR46, WR48a τ Sco analogs θ^2 Ori A stars

Galactic plane absorption

Massive stars concentrate in galactic plane

Leiden-Dwingeloo 21 cm at δ >-30; Dickey-Lockman 21 cm at δ >-30

Even in the most obscured regions, eROSITA will reach $F_X = 6 \ 10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2}$. Sensitive to detect 'normal' massive star within 1.5 kpc.

Important: X-ray spectra and hardness ratios

Local Star Formation: Gould's Belt

- Most star formation within 0.5 kpc lies in Gould's Belt.
- Ring centred on a point 200 pc from the Sun and tilted at 20 degrees to the Galactic Plane.

• eROSITA will provide a very significant highenergy picture of solar neighbourhod

• eROSITA combined with IR and mm surveys: unravel the local star formation history

Massive star clusters

- 70% of massive stars reside in star clusters
- Chandra and XMM-Newton: deep insight into the anatomy of star clusters: Stars and hot gas

Open stellar cluster: sigma Orionis

Sample of massive star clusters in the LMC

- LMC, SMC important sample of clusters differemt M and Age
- There is evolution of X-ray emission from clusters
- Well studied in optical/IR: cluster parameters are known

eROSITA: variability, transients, bubbles, XRBs location

Massive stars and clusters: structuring galaxies

00:00 Hα image of the SMC	
	NGC346
30:00	
SGS SMC1	
-72:00:00	-
	. · · ·
30:00	2
-73:00:00	
Supergiant shells: massive star feedb	back?
• Chimneys to IGM • X-rays: hot gas, stellar remnants (XR	B, NS, SNR)
• X-ray surveys: cover main bodies of g	galaxies
-74:00:00 IN 9U 40:00 30:00 20:00 10:00 1:00:00	50:00 40

Part of the SMC Wing in X-rays

EPIC PN 3 colour

The periferal part of the SMC Wing: low ρ and Z

Star formation: new XRBs are detected

eROSITA: galactic suburbs starformation in province

LMC: 20ks survey. Excellent to study the SMC Wing, the Bar, the galaxy interactions

XRB with $L_X > 10^{32}$ erg s⁻¹ will be identified

Diffuse X-ray emission: heated gas

Optical/IR/radio follow up are important

Henault-Brunet etal. (2011), Oskinova etal (2012)