

Document Title: SPARK INstructional Guide
 for KMOS data

Document Number: VLT-MAN-KMO-146611-009

Issue: 1.5

Date: 05.03.14

Document
Prepared By:

R. Davies
A. Agudo Berbel
E. Wiezorrek

Signature and Date:

Document
Approved By: N. Förster Schreiber Signature and Date:

Document
Released By: A. Fairley Signature and Date:

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

2 of 35

Change Record

Issue Date Section(s)

Affected
Description of Change/Change Request
Reference/Remarks

0.5 31.01.13 All Draft at end of Comm-2
0.7 04.04.13 All Update after Comm-3
0.8 08.05.13 All Intermediate update for SPARK v1.1.2
0.9 15.07.13 All Revised after completing A&A manuscript (to avoid

duplication of algorithmic descriptions & comparisons);
added OH_SPEC file to sof as default; added subsection on
object-sky pairings; mentioned alternative way to create
illumination correction

1.0 20.09.13 All First full issue, updated for start of P92 with version 1.2.5 of
the SPARK software

1.1 28.10.13 4.4 Includes an alternative recipe for illumination correction
1.2 18.11.13 4.5, 5.1 Includes object/sky association table and exposure mask

creation in science reduction; and noise estimation for
standard stars.

1.3 11.12.13 5.1 Includes object/sky association table for arbitrary IFUs and
velocity offsets

1.4 07.02.14 5.1.1 Added Figure 5 and explanations on cross-arm sky
subtraction

1.5 05.03.14 2.2.4, 5.1.4 Added notes on SPARKplug (rather obsolete) and
kmo_multi_reconstruct (advanced users)

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

3 of 35

TABLE OF CONTENTS
1	 SCOPE	 ...	 4	
2	 GETTING	 STARTED	 WITH	 ESOREX	 ..	 4	

2.1	 INSTALLATION	 ..	 4	
2.2	 USING	 THE	 SOFTWARE	 ...	 5	

2.2.1	 ESOREX	 &	 Recipes	 ..	 5	
2.2.2	 Static	 Calibration	 Files	 ...	 6	
2.2.3	 easySPARK	 scripts	 ..	 7	
2.2.4	 SPARKplug	 ..	 7	

3	 HANDLING	 KMOS	 DATA	 ..	 8	
3.1	 DATA	 FORMAT	 AND	 PROPERTIES	 ...	 8	
3.2	 HEADER	 KEYWORDS	 ..	 9	
3.3	 IFU	 ORIENTATION,	 PIXEL	 ARRANGEMENT,	 RESOLUTION	 ..	 11	
3.4	 IMPACT	 OF	 FLEXURE	 ..	 12	

4	 PROCESSING	 CALIBRATIONS	 ...	 13	
4.1	 DARKS	 ..	 13	
4.2	 FLATS	 ...	 14	
4.3	 ARCS	 ..	 15	
4.4	 ILLUMINATION	 CORRECTION	 ...	 16	

4.4.1	 Using	 sky-‐flat	 exposures	 ..	 17	
4.4.2	 Using	 flatfield	 frames	 ..	 18	

4.5	 STANDARD	 STARS	 ...	 18	
4.5.1	 Flux	 Calibration	 ..	 20	
4.5.2	 Telluric	 Calibration	 ...	 21	

5	 SCIENCE	 REDUCTION	 ..	 21	
5.1	 MONOLITHIC	 PIPELINE	 ...	 22	

5.1.1	 Object-‐Sky	 and	 Object	 ID-‐IFU	 Associations	 ..	 25	
5.1.2	 Mapping	 &	 Mosaics	 ...	 28	
5.1.3	 Improving	 Cosmetics	 ..	 29	
5.1.4	 Multi-‐reconstruct	 ...	 29	

5.2	 WORK-‐FLOW	 ONE	 STEP	 AT	 A	 TIME	 ...	 29	
5.2.1	 Preparation:	 sky	 subtraction	 and	 flatfielding	 ..	 30	
5.2.2	 Reconstruction	 ...	 30	
5.2.3	 Shifting	 and	 Combining	 ..	 31	

6	 OTHER	 USEFUL	 RECIPES	 ..	 31	
6.1	 SIMPLE	 MATHEMATICS	 ..	 32	
6.2	 BASIC	 STATISTICS	 ..	 32	
6.3	 MAKE	 IMAGES	 ...	 32	
6.4	 EXTRACT	 SPECTRA	 ..	 33	
6.5	 ROTATE	 CUBES	 ..	 33	
6.6	 COPY	 CUBE	 SECTIONS	 ...	 33	

7	 TROUBLESHOOTING	 ...	 33	
7.1	 DETECTOR	 READOUT	 CHANNELS	 ..	 34	
7.2	 UNDERSAMPLING	 ...	 34	
7.3	 MISMATCHED	 CALIBRATIONS	 ..	 34	
7.4	 DISCONTINUOUS	 VELOCITY	 FIELD	 ..	 35	

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

4 of 35

1 Scope
SPARK is the Software Package for Astronomical Reduction with KMOS. It includes the official
pipeline release, as well as some additional perl and shell scripts that can help make using it easier.

This document describes how to get started using SPARK to process KMOS data without reading the
full manual. It does not include everything, only the essential things you need to know together with
some useful tips. KMOS is a complex instrument and, inevitably, so is the data and the data
processing. We have tried to keep it as simple as possible. The guide may seem long, but it takes you
through step-by-step, providing examples to follow. So just start, and work your way through it. We
hope it is useful, both for beginners and as a reference.

If you use this software, please cite the following reference
“The Software Package for Astronomical Reductions with KMOS: SPARK”
Davies R., Agudo Berbel A., Wiezorrek E., Cirasuolo M., Förster Schreiber N.M., Y. Jung,
Muschielok B., Ott T., Ramsay S., Schlichter J., Sharples R., Wegner M., 2013
A&A, 558, A56

If you use either of the wavelength matching or OH line scaling options, please also cite
“A method to remove residual OH emission from near-infrared spectra”
Davies R., 2007
MNRAS, 375, 1099

2 Getting started with ESOREX
The pipeline can be run on the command line using ESOREX (ESO’s recipe execution tool; see
http://www.eso.org/sci/software/cpl/esorex.html).

In principle, one can also use ESO’s tools GASGANO or REFLEX which provide some file sorting
capabilites and graphical interfaces to the pipeline We prefer to use the tools provided with SPARK:
either the set of easySPARK scripts to sort files and to create the file lists needed by ESOREX
automatically, or the SPARKplug to do this in a manual way. But file lists can also be made by hand
using any text editor. If you want to use GASGANO or REFLEX and need help, please contact ESO’s
User Support Department.

2.1 Installation
SPARK is distributed by ESO as a kit (kmos-kit-x.x.x.tar.gz) containing the official pipeline
recipes, some additional tools and the manual. The libraries included aren’t necessarily the newest, but
they are the same ones installed in the software environment at Paranal. MPE also distributes their own
kit (spark-kit-x.x.x.tar.gz) without GASGANO, which uses the newest libraries and includes the
most up-to-date fixes. This can be found at https://wiki.mpe.mpg.de/KMOS-spark. In either case, users
have to create their own calibrations in order to obtain the best results.

The software runs on all major Unix-based operating systems, as well MacOSX. For installation, the
script install_pipeline.sh, included in the kit, has to be executed. At installation, a target directory
(e.g. /share/KMOSpipeline) and a calibration directory (e.g. /share/KMOScalib) must be specified.
Note that throughout this guide we use /share as the path to the KMOS directories.

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

5 of 35

Installing GASGANO is a tad more tricky since it requires the path to the java runtime. We do not
discuss the use of GASGANO in this guide. If you also do not need GASGANO, you can delete the
gasgano tar-file and the install_pipeline.sh script will just skip it.

As a first check to see if all the necessary libraries have been installed correctly, just type:
> esorex

 ***** ESO Recipe Execution Tool, version 3.10 *****

Libraries used: CPL = 6.3, CFITSIO = 3.31, WCSLIB = 4.16 (FFTW unavailable)

(the FFTW isn’t distributed with the kit and isn’t needed for KMOS).

After installation, add /share/KMOSpipeline/bin (where /share/KMOSpipeline should be replaced
with your installation target directory) to your PATH environment variable (in .tcshrc or .bashrc).
And copy all the scripts from kmos-kit-x.x.x/kmos-x.x.x/tools/SPARKplug to
/share/KMOSpipeline/bin. Ensure that all files ending with *.pl and *.pm are executable. If they are
not then execute
> chmod a+x *.pl *.pm in /share/KMOSpipeline/bin.
For SPARKplug.pl to run, the ‘perl-tk’ module must be installed (for MacOSX using MacPorts, install
the port ‘p5-tk’).

If ESOREX doesn’t behave as described in this manual, some configurations can be done manually.
The most comprehensible way is to type:
> esorex --create-config=true

This creates .esorex/esorex.rc in your HOME directory which can be edited in any text editor and
provides a multitude of configuration possibilities. For example set
esorex.caller.suppress-prefix=TRUE
in order to override the standard ESOREX file-naming convention which defaults to out_xxx.fits.

2.2 Using the software
2.2.1 ESOREX & Recipes
Help for esorex is provided by the command:
> esorex -help

 ***** ESO Recipe Execution Tool, version 3.10 *****
Usage: esorex [esorex-options] recipe [recipe-options] sof

And a list of the recipes available is given by:
> esorex –recipes

 ***** ESO Recipe Execution Tool, version 3.10 *****
List of Available Recipes :

 kmo_arithmetic : Perform basic arithmetic on cubes
 kmo_combine : Combine reconstructed cubes
 kmo_copy : Copy a section of a cube to another cube, image or
 spectrum
 kmo_dark : Create master dark frame & bad pixel mask
 kmo_dev_setup : Create aligned KMOS files out of test frames

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

6 of 35

 kmo_extract_spec : Extract a spectrum from a cube.
 kmo_fits_check : Check contents of a KMOS fits-file
 kmo_fits_stack : Creates KMOS conform fits-files
 kmo_fits_strip : Strip noise and/or rotator extensions from a processed
 KMOS fits frame
 kmo_fit_profile : Fit spectral line profiles as well as spatial profiles
 with a simple function - for example to measure
 resolution or find the centre of a source
 kmo_flat : Create master flatfield frame and badpixel map to be
 used during science reduction
 kmo_illumination : Create a calibration frame to correct spatial
 non-uniformity of flatfield.
 kmo_illumination_flat : Alternative to kmo_illumination based on flatfield

 frames.
 kmo_make_image : Collapse a cube to create a spatial image
 kmo_multi_reconstruct : Reconstruct and combine cubes in one processing step
 kmo_noise_map : Generate a noise map from a raw frame
 kmo_reconstruct : Performs the cube reconstruction using different
 interpolation methods.
 kmo_rotate : Rotate a cube spatially
 kmo_sci_red : Reconstruct and combine data frames dividing
 illumination and telluric correction.
 kmo_shift : Shift a cube spatially
 kmo_sky_mask : Create a mask of spatial pixels that indicates which
 pixels can be considered as sky.
 kmo_sky_tweak : Removal of OH sky lines
 kmo_stats : Perform basic statistics on a KMOS-conform fits-file
 kmo_std_star : Create the telluric correction frame.
 kmo_wave_cal : Create a calibration frame encoding the spectral
 position (i.e. wavelength) of each pixel on the
 detector.

Not all of the recipes are required to run the pipeline; some aim instead to provide useful tools for
manipulating KMOS data, which can otherwise be awkward due to the use of numerous extensions.

Detailed help on any individual recipe (an outline of its purpose, a list of input files required, a list of
the output files produced, and a description of the various optional parameters) can be found by, for
example:
> esorex -man kmo_flat

 ***** ESO Recipe Execution Tool, version 3.10 *****

NAME
 kmo_flat -- Create master flatfield frame and badpixel map to be used during
 science reduction

SYNOPSIS
 esorex [esorex-options] kmo_flat [kmo_flat-options] sof

DESCRIPTION
<blah>

2.2.2 Static Calibration Files
The KMOS data reduction recipes require a number of calibrations that should not need to change.
These include, for example, arc-line lists, look-up tables etc. The user should confirm that these are
available. A full list of these is:

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

7 of 35

kmos_ar_ne_list_h.fits
kmos_ar_ne_list_hk.fits
kmos_ar_ne_list_iz.fits
kmos_ar_ne_list_k.fits
kmos_ar_ne_list_yj.fits

kmos_atmos_h.fits
kmos_atmos_hk.fits
kmos_atmos_iz.fits
kmos_atmos_k.fits
kmos_atmos_yj.fits

kmos_solar_h_2400.fits
kmos_solar_hk_1100.fits
kmos_solar_k_1700.fits

kmos_oh_spec_h.fits
kmos_oh_spec_hk.fits
kmos_oh_spec_iz.fits
kmos_oh_spec_k.fits
kmos_oh_spec_yj.fits

kmos_wave_ref_table.fits kmos_wave_band.fits kmos_spec_type.fits

2.2.3 easySPARK scripts
Normally data are obtained in a well-defined standard procedure and creating sof-files to reduce these
is therefore a quite repetitive task. These scripts aim to create sof-files and run ESOREX on them in a
fairly automated manner.

All the scripts require a single file (path and name) as input and extract the other associated exposures
via the TPL.START keyword, which is identical for all exposures generated in a single template. Fur-
thermore, the environment variable KMOS_CALIB should be set to a path containing the static calib-
ration files (see Sec. 2.2.2). Then if any dynamic calibration file (like e.g. XCAL) is not found in the
working directory, KMOS_CALIB is queried as well.

In order to obtain help on a specific script, just execute the script without an argument. If just the sof-
files should be created without running ESOREX, simply provide sof as an additional parameter.

Specific examples are given in the later sections of this guide, where appropriate.

For the calibration recipes, the following scripts are available:
easySPARK_dark.sh
easySPARK_flat.sh
easySPARK_wave_cal.sh
easySPARK_illumination.sh
easySPARK_std_star.sh

easySPARK_calibration.sh Unifies the dark, flat and wave_cal scripts. Here, because the

keyword OBS.START is also examined, the script only works
when all the calibration files have been generated in a single
observation block (which is normally the case).

For standard use-cases there exist also scripts which are rather self-explanatory:
easySPARK_reconstruct.sh
easySPARK_kmo_sci_red.sh
easySPARK_kmo_multi_reconstruct.sh

2.2.4 SPARKplug
It is recommended to use the easySPARK-scripts and eventually adapt the generated sof-files instead
of using the SPARKplug. The category associations are a bit outdated. Nevertheless this tool can be
used to navigate through the FITS header keywords.

Most recipes require a ‘set of files’ (sof) as input. The SPARKplug is a graphical data organizer that
assists in preparing these lists, and insuring that all the necessary calibration files are included. It is not
required – and is not part of the official pipeline release – but does make this step easier. It is started
with the command below, with directories for the raw and calibration files set as examples
> SPARKplug.pl -cal=/share/KMOScalib -raw=/share/KMOSdata

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

8 of 35

The SPARKplug has sufficient file sorting capability to make this task relatively straightforward as
long as the static calibration files, the raw data files, and the processed calibration products are kept in
appropriate directories. One just needs to decide for which recipe the sof list is required, and the
SPARKplug will show the set of appropriate raw and calibration files from which to choose. Being
able to sort the files by name, band, etc, makes this very quick and simple. Files can be selected and
de-selected. The sof list can be edited manually, and saved, or used directly with the recipe.

Figure 1: The SPARKplug tool can assist in preparing the ‘set of files’ required by most recipes.

3 Handling KMOS data
3.1 Data Format and Properties
The KMOS instrument has 3 similar segments, and so each exposure yields 3 frames. The data are
stored in fits extensions. Since each segment has 8 IFUs, the reconstructed data will have 24
extensions (or 48 if noise is propagated). One can quickly see how many extensions a file has and what
format the data is stored as, using:
> esorex kmo_fits_check KMOS.2013-01-22T00:40:42.326.fits

<blah>
++
FORMAT: RAW
NAXIS: 2
NAXIS1: 2048
NAXIS2: 2048
NOISE: FALSE
BADPIX: FALSE
NR. EXT: 3 (excluding primary header)
 NR. DATA: 3
 NR. NOISE: 0
 NR. BADPIX: 0
 NR. EMPTY: 0

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

9 of 35

VALID RAW FILE!
++
[INFO] esorex: [tid=000] 0 products created

If you want to view the data, we recommend using QFitsView, which can be downloaded from
http://www.mpe.mpg.de/~ott/QFitsView. Other viewers able to read extensions can also be used.
When opening a FITS file containing extensions in QFitsView, take care either to check the checkbox
“All extensions” or to specify which extension to load in the File-Open dialog.

3.2 Header Keywords
KMOS data has a lot of keywords, both in the primary header and the extension headers. We
recommend using dfits and fitsort (both part of the qfits package from ESO) to list relevant
keywords in the data. An example of usage is:

> dfits –x 0 KMOS*fits | fitsort tpl.id det.seq1.dit ins.filt1.id ocs.rot.naangle

FILE TPL.ID DET.SEQ1.DIT INS.FILT1.ID OCS.ROT.NAANGLE
KMOS.2013-01-22T00:27:27.277.fits KMOS_spec_cal_stdstar 20.0000000 H -13.593
KMOS.2013-01-22T01:18:56.148.fits KMOS_spec_cal_stdstar 20.0000000 YJ 9.478
KMOS.2013-01-21T18:08:51.306.fits KMOS_spec_cal_dark 10.0000000 Block -60.000

Or to list all QC parameters in a processed file:
> dfits –x 0 cube.fits | grep QC

For these data, the ‘-x 0’ is important since it will then look at the headers in all extensions.

Another useful expression allows you to list, for example, the names of the targets assigned to each
arm in a single frame. This is otherwise difficult since each arm has a different keyword:
> dfits KMOS.2013-03-26T07:56:34:781.fits | grep “OCS.ARM.*.NAME”

Similarly the allocation of the arms in a frame as reference/object/sky (R/S/O) can be listed using
> dfits KMOS.2013-03-26T07:56:34:781.fits | grep “OCS.ARM.*.TYPE”

A list of the most useful keywords in the RAW frames, and where to find them (p: primary header, x:
extension header), is:

keyword in RAW frame location description
dpr.type p Type of observation (e.g. object,sky / flat,lamp / dark / etc)
obs.start p Date/time at which the OB was started
tpl.start p Date/time at which the template (within the OB) was started
tpl.id p Name of template used for observations
date-obs p Date/time at which exposure was started
obs.id p Unique identifier for OB
obs.name p Name of OB
paf.id p Name of KARMA parameter file (PAF) used: *.ins
obs.targ.name p Name of KARMA catalogue used; typically *.cat
ocs.arm[1-24].name p Name of target assigned to arm [1-24]
ocs.arm[1-24].type p Type of exposure for this arm (O / S / R for object / sky /

reference)
det.seq[1-3].dit p Integration time for detector [1-3]
det.ndit p Number of integrations averaged during exposure
det.ndsamples p Number of non-destructive samples during integration

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

10 of 35

ins.filt[1-3].id p Name of filter [1-3] (IZ / YJ / H / HK / K / Block)
ins.grat[1-3].id p Name of grating [1-3] (IZ / YJ / H / HK / K)
ins.lamp1.st p Keyword only included if status of argon lamp is ON
ins.lamp2.st p Keyword only included if status of neon lamp is ON
ins.lamp3.st p Keyword only included if status of flatfield lamp is ON
ocs.rot.offangle p Orientation of KMOS field wrt North
ocs.rot.naangle p Orientation of KMOS instrument wrt Nasmyth platform
tel.parang.[start/end] p Parallactic angle at start / end of exposure
tel.airm.[start/end] p Airmass at start / end of exposure
tel.targ.alpha p Right ascension of preset telescope pointing (first field

centre defined in KARMA).
tel.targ.delta

p Declination of preset telescope pointing (first field centre
defined in KARMA).

ocs.targ.alpha p Right ascension of current assigned telescope pointing (field
centre). KARMA defines 2 field centres.

ocs.targ.delta p Declination of current assigned telescope pointing (field
centre). KARMA defines 2 field centres.

ocs.arm[1-24].alpha p Right ascension of pointing assigned to arm [1-24].
KARMA defines 2 pointings for each arm, associated with
the 2 field centres.

ocs.arm[1-24].delta p Declination of pointing assigned to arm [1-24]. KARMA
defines 2 pointings for each arm, associated with the 2 field
centres.

ocs.arm[1-24].notused p Keyword only present if arm is not used
ocs.targ.ditha p Relative offset (right ascension) of dither position with

respect to the current assigned pointing, in arcsec. Dither
sequences for the 2 KARMA field centres are followed
independently.

ocs.targ.dithd p Relative offset (declination) of dither position with respect
to the current assigned pointing, in arcsec. Dither sequences
for the 2 KARMA field centres are followed independently.

ocs.stdstar.mag p Magnitude of standard star, if it is given in the template.
Applies only to files created with the stdstar templates.

ocs.stdstar.type p Spectral type of standard star, if it is given in the template.
Applies only to files created with the stdstar templates.

extname x Name of extension: CHIP[1-3].INT1
det.chip.gain x Gain in e- per ADU of chip (=2.1)
naxis x Dimension of data in the extension
naxis[1-n] x Size of data axis [1-n]

A list of the most useful keywords in the pipeline products, and where to find them, is given below.
QC parameters are excluded from this list, and instead a selection of the most useful ones is given in
each of the respective sections of this document. To see all QC parameters in the header, use:
> dfits –x 0 product.fits | grep QC

keyword in processed frame location description
extname x Name of extension, e.g. IFU.1.DATA / IFU.1.NOISE / etc.
pro.catg p Type of product

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

11 of 35

pro.rot.naangle x Orientation of KMOS instrument (wrt Nasmyth platform)
associated with extension; especially useful for master_flat.

pipefile p Useful when facing data produced by the on-line
workstation. This is the human-readable name for the file,
which you would get if you processed the data yourself.

If you want to rename the output of the on-line workstation to more useful names, try the following:
> dfits *fits | fitsort PIPEFILE > filelist

Check that filelist has no repeated names, and then rename everything:
> awk ‘{if ($1 != “FILE”) {printf(“mv %s %s\n”,$1,$2)}}’ filelist | csh

This also works for renaming archive files, but using the ORIGFILE keyword instead of PIPEFILE.

3.3 IFU orientation, pixel arrangement, resolution
Across the detectors, the IFUs are numbered sequentially from left to right, across detector 1 to 3. The
order (from left to right across a detector) of the spatial pixels within a slitlet, and the slitlets within an
IFU, is more complex. These are arranged as shown in Figure 2 for the 24 IFU fields. The effect of this
arrangement can be seen in the raw data and also sometimes in the reconstructed cubes. The spectral
axis is approximately aligned with the columns. Long wavelengths are at the bottom of the detectors;
short wavelengths at the top. If KMOS is oriented to north (ocs.rot.offangle = 0), then the IFUs
will all have north up and east to the left. If the offset angle is non-zero, then all the IFU fields are
rotated by that angle.

Figure 2: Order (from left to right on the detector) of the spatial pixels and slitlets in each IFU.

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

12 of 35

Figure 3: Resolution map of KMOS in H-band as a function of spatial & spectral position (in units of
wavelength rather than velocity). Slitlets from the IFUs (labelled 1-24) have been drawn side-by-side.
Resolution is indicated by colour from 3A (dark blue) to 6.7A (red).

The image quality across the slitlets is excellent, and is a true representation of the seeing. The image
quality along the slitlets is affected by the KMOS optics and adds, in quadrature, about 0.2” to the
resolution. This is most noticeable in the best seeing conditions. Note that the image quality of IFUs 23
and 24 is not quite as good as the others; while the spectral resolution (Figure 3) at the short end of
IFUs 1-8 is slightly poorer than the rest.

3.4 Impact of Flexure
For a discussion of the sources and scales of the flexure in KMOS, see Davies et al. (2013). What is
important to deal with it are the following points:

• Standard calibrations are taken at 6 rotator angles. In addition, at the end of each night, calibrations

are taken at a set of (at most 6) angles best suited to the observations that have been done. When
processing data, the pipeline automatically selects the calibration at the closest available rotator
angle to the data. This process is completely transparent to the user.

• Residual spectral flexure can be measured and corrected from the OH lines without requiring
additional interpolations of the science data. This is described in the options for the kmo_sci_red
recipe in Section 5.1, and requires the user to include the appropriate kmo_oh_spec_#.fits file in
the sof)

• Residual spatial flexure due to the rotator angle being between those used for calibrations is
accounted for in the pipeline (with the –xcal_interpolation parameter, which is set TRUE as
default).

• Residual spatial flexure due to temperature changes can only be compensated by using calibrations
taken within a day of the science data, so that the cryostat temperature is the same to within 1K.

• Residual spatial flexure due to the finite repeatability of the grating positioning is not accounted for
in the pipeline. This corresponds to about 0.2pixels on the detector, and is most cases can probably
be ignored. In principle it could be corrected by using the OH lines to find how far the edges of the
slitlets in the science data are offset from those in the flatfield, and applying a matching correction
to the XCAL and YCAL calibration frames.

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

13 of 35

• Global flexure of the instrument is not corrected. It causes a drift over time of the IFU pointings on
sky. This is nearly the same for all IFUs and so can be tracked and corrected if at least 1 IFU is
pointing to a reference source that is bright enough to see in every exposure. This can be important
if the rotator turns by more than ~30deg during a sequence of exposures.

4 Processing Calibrations
To create a complete set of processed calibrations, the recipes should be executed in the order given
below because the later recipes make use of products from earlier ones. In addition, one should use a
consistent set of frames (i.e. at least the flat and arc templates should have been executed in a single
OB), so that the set of files (sof) grows consistently as one progresses through the recipes. Note that
frames that do not belong to a recipe are ignored, so there is no harm in having them propagated.

First set up a ‘reduction session’ by creating an appropriate directory structure. In the examples shown,
the path /share is used, and the directories to create are:
KMOScalib for static and processed calibration products
KMOSdata contains all the raw data files (or links to them)
KMOSscience will contain the processed products from the science observations
We recommend creating environment variables KMOS_CALIB and KMOS_DATA since the first is used in
the easySPARK scripts and both of them can anyway be used in manually created sof-files. Once this
is done, copy the static calibrations into KMOScalib (or make links to them), move into KMOScalib,
and run the calibration recipes as described below

HINTS
• Processing calibrations from all 5 bands can take some time. Because, for standard calibrations, the

dark, flat, and arc templates are combined in a single OB, we recommend executing in KMOScalib:
> easySPARK_calibration.sh /share/KMOSdata/KMOS_SPEC_DARK018_0012.fits

where the filename given is the full path of any single frame from that OB. The script will
automatically process darks, flats, and arcs (it identifies all the other associated files, makes the
necessary sof lists, and executes the recipes).

• Alternatively one can create all the ‘set of files’ (sof) lists first, and then set the recipes running
overnight. If the directory structure above is followed, and KMOScalib is used as the working
directory, then all the calibration products will appear there too, ready for the subsequent recipes.

4.1 Darks
The easiest way to process dark frames is to execute:
> easySPARK_dark.sh /share/KMOSdata/KMOS.2013-01-18T08:18:19.810.fits

where the filename given is the full path of any single dark exposure of the appropriate exposure time.
The script will automatically identify the other relevant files from that template, generate the sof list,
and execute the recipe. Note that to get help about the script simply execute
> easySPARK_dark.sh
on its own. Or to just generate the sof list, add sof as a parameter:
> easySPARK_dark.sh /share/KMOSdata/KMOS.2013-01-18T08:18:19.810.fits sof

Alternatively, you can do all this by hand as described below.

Create a file called, for example, dark_60s.sof which contains a list of at least several dark exposures
with the same exposure time (det.seq1.dit and det.ndit), together with the identifier DARK. The
file will look something like this (but typically with 5 DARK frames):

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

14 of 35

> cat dark_60s.sof
/share/KMOSdata/KMOS.2013-01-18T08:18:19.810.fits DARK
/share/KMOSdata/KMOS.2013-01-18T08:18:58.550.fits DARK
/share/KMOSdata/KMOS.2013-01-18T08:19:36.207.fits DARK

If you have set the environment variable KMOS_DATA then this can also be written as
$KMOS_DATA/KMOS.2013-01-18T08:18:19.810.fits DARK
$KMOS_DATA/KMOS.2013-01-18T08:18:58.550.fits DARK
$KMOS_DATA/KMOS.2013-01-18T08:19:36.207.fits DARK

Then execute the kmo_dark recipe:
> esorex kmo_dark dark_60s.sof

This will create master_dark.fits, and a preliminary bad pixel mask badpixel_dark.fits that is
used by kmo_flat. If you want the exposure time appended to the output file name then execute the
recipe with an extra parameter:
> esorex kmo_dark –file_extension dark_60s.sof

HINTS
• If you want to rename the files in a different way, you should do this yourself
• Dark frames can be identified either from the file name or from the dpr.type keyword as DARK
• Ignore the ins.grat[1-3].id keyword in dark frames – it has no meaning for them. Having said

this, dark frames can be reconstructed even though there is no associated waveband.
• The parameters pos_bad_pix_rej and neg_bad_pix_rej can be used to adjust the sigma level at

which pixels are flagged as bad; e.g.
> esorex kmo_dark –pos_bad_pix_rej=25 dark_60s.sof

• The dark current is extremely low, ~0.01e-/s.
• The readnoise is lowest (~3.2 ADU) for exposures times in the range 100-600sec; for exposures of

10sec it increases to ~5 ADU.
• We recommend using dark exposures of 60-300sec to identify bad pixels, because the number of

bad pixels flagged increases with exposure time up to ~60sec and then stabilises at 48/18/17×103
for detectors 1/2/3.

• Useful QC parameters include:
QC.BADPIX.NCOUNTS number of bad pixels (in each extension)

4.2 Flats
As before, the easiest way to process flatfield frames is to execute:
> easySPARK_flat.sh /share/KMOSdata/KMOS.2013-01-20T11:54:43.619.fits

where the filename given is the full path of any single flat exposure of the required waveband. The
script will automatically identify the other relevant files from the template, generate the sof list, and
execute the recipe. Alternatively, you can do it by hand.

Create a sof list containing the lamp on and lamp off flatfield frames, as well as the preliminary bad
pixel mask – together with their identifiers. Note that due to flexure, flats and arcs are usually taken at
6 rotator angles so the list may be long. To make a list of the appropriate raw frames with relevant
information, use a command like
> dfits KMOS*CAL*fits | fitsort tpl.id ins.filt1.id det.seq1.dit ocs.rot.naangle | grep calunitflat

The resulting sof may look like this (but with 3 FLAT_OFF and 18 FLAT_ON frames)
> cat flat_k.sof
/share/KMOScalib/badpixel_dark.fits BADPIXEL_DARK

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

15 of 35

/share/KMOSdata/KMOS.2013-01-20T11:47:13.620.fits FLAT_OFF
/share/KMOSdata/KMOS.2013-01-20T11:54:43.619.fits FLAT_ON

Note that because KMOScalib is the working directory, and the order of the files in the sof list does not
matter, flat_k.sof could also look like this:
/share/KMOSdata/KMOS.2013-01-20T11:54:43.619.fits FLAT_ON
badpixel_dark.fits BADPIXEL_DARK
/share/KMOSdata/KMOS.2013-01-20T11:47:13.620.fits FLAT_OFF

Then execute the kmo_flat recipe:
> esorex kmo_flat flat_k.sof

Five files will be produced, which are tagged with the waveband used. The waveband tag is repeated 3
times, once for each of the instrument segments.
master_flat_###.fits Normalised flatfields, typically with 36 extensions (data and noise

frames for each detector, and for 6 rotator angles).
xcal_###.fits,

ycal_###.fits
Frames containing the x and y coordinates within an IFU (an integer
given in milli-arcsec from the centre of that IFU field) for every
illuminated pixel on the detector. The number after the decimal point is
the IFU identification. These frames have 18 extensions (3 detectors, 6
rotator angles).

badpixel_flat_###.fits Map of bad or non-illuminated pixels (18 extensions as above).
flat_edge_###.fits Coefficients of fits to the left and right edges of the slitlets in the IFUs

(144 extensions for 24 IFUs and 6 rotator angles).

HINTS
• You should not need to rename any of these files.
• Flatfield frames can be identified with the dpr.type keyword as FLAT,LAMP and FLAT,OFF
• Make sure you use frames taken together as a set, rather than mixing data from different dates.
• It is planned that the flat and arc calibrations taken after a night will match the rotation angles used

during that night. To get the best results, one should use this matching set of flats and arcs to
process the data.

• The flatfield illumination is not uniform, and so it is recommended to include an illumination
correction when processing science data (see Section 4.4).

• The badpixel mask created from the flatfield frames (badpixel_flat_###.fits) includes also all
non-illuminated pixels and so will be of order 90000.

• Useful QC parameters include:
QC.FLAT.SAT.NCOUNTS number of saturated pixels
QC.FLAT.SN mean signal-to-noise of illuminated regions
QC.SLIT.MEAN mean slit width in pixels

4.3 Arcs
Again, the easiest way to process arc frames is to execute:
> easySPARK_wave_cal.sh /share/KMOSdata/KMOS.2013-01-20T14:10:43.655.fits

where the filename given is the full path of any single arc exposure of the required waveband. The
script will automatically identify the other relevant files from the template, generate the sof list, and
execute the recipe. How to do this manually is described below.

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

16 of 35

Create a sof list containing the on/off arc-lamp frames, together with the required calibration products
produced by kmo_flat and a few static calibration files. To make a list of the appropriate raw frames
with relevant information, use a command like
> dfits KMOS*CAL*fits | fitsort tpl.id ins.filt1.id det.seq1.dit ocs.rot.naangle | grep cal_wave

The resulting sof may look like this (but with 6 ARC_ON frames for the 6 rotator angles). The order of
the files does not matter, but they must be tagged correctly.
> cat arc_iz.sof
/share/KMOSdata/KMOS.2013-01-20T14:04:12.077.fits ARC_OFF
/share/KMOSdata/KMOS.2013-01-20T14:10:43.655.fits ARC_ON
/share/KMOScalib/badpixel_flat_IZIZIZ.fits BADPIXEL_FLAT
/share/KMOScalib/flat_edge_IZIZIZ.fits FLAT_EDGE
/share/KMOScalib/master_flat_IZIZIZ.fits MASTER_FLAT
/share/KMOScalib/xcal_IZIZIZ.fits XCAL
/share/KMOScalib/ycal_IZIZIZ.fits YCAL
/share/KMOScalib/kmos_ar_ne_list_iz.fits ARC_LIST
/share/KMOScalib/kmos_wave_band.fits WAVE_BAND
/share/KMOScalib/kmos_wave_ref_table.fits REF_LINES

Then execute the kmo_wave_cal recipe:
> esorex kmo_wave_cal arc_iz.sof

Two files will be produced, which are tagged with the waveband used.
lcal_###.fits Frame containing wavelength (in microns) for every illuminated pixel on

the detector. This frame has 18 extensions (3 detectors, 6 rotator angles).
det_img_wave_###.fits Reconstructed arc-lamp frame, reformatted so that slitlets and IFUs are

side-by-side (a pseudo detector image). This is wavelength calibrated, so
arc lines should exactly follow the rows, allowing one to quickly and
easily verify that the recipe has been successful.

HINTS
• Arclamp frames can be identified with the dpr.type keyword as WAVE,LAMP and WAVE,OFF
• Typically arcs are taken together with flats, and we strongly recommend using those frames – it is

very important to ensure you have a consistent set of calibration products.
• The order of the files in the sof list does not matter; and it is not necessary to specify the full path

for files that are in the working directory. One can also make use of environment variables instead
of writing out the full path each time.

• Useful QC parameters include:
QC.ARC.SAT.NCOUNTS number of saturated pixels
QC.ARC.AR.POS.MEAN mean offset (in km/s) of reference argon line
QC.ARC.AR.FWHM.MEAN mean FWHM (in km/s) of reference argon line
QC.ARC.NE.POS.MEAN mean offset (in km/s) of reference neon line
QC.ARC.NE.FWHM.MEAN mean FWHM (in km/s) of reference neon line

4.4 Illumination Correction
It is recommended to generate an illumination correction frame. Even if you decide, in the end, not to
use it, at the very least it allows you to check how uniformly the fields of view were illuminated during
the flatfield exposures. There are two ways to create the illumination correction:

1) Using dedicated skyflat exposures. This recovers the full correction for each spatial pixel, and
can work well with sufficient signal-to-noise in the skyflat exposures. But it is difficult to

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

17 of 35

handle the slitlet edges properly due to the differential flexure of the instrument between the
flatfield and skyflat exposures. To compensate this, the skyflat data are shifted so that the
locations of the slitlet edges on the detector match those for the flatfield, but there may still be
some residual effects limiting the accuracy of the edges in the reconstructed fields of the output
frames.

2) Using the flatfield itself. This, by definition, does not suffer the limitation above. But deriving
the illumination correction from the flatfield requires generously smoothing the reconstructed
image in order to try and distinguish between things should be left in the flatfield (e.g. pixel-to-
pixel and slitlet-to-slitlet differences) and those that should not (e.g. global gradients). This
itself has consequences and, for example, the resulting output frames may not fully follow any
steep turnovers in illumination.

4.4.1 Using sky-flat exposures
This can be done with a single command with one of the appropriate files given as a parameter:
> easySPARK_illumination.sh /share/KMOSdata/KMOS.2013-01-18T23:49:03.113.fits

but is described more fully below.

Prepare a sof list containing the sky-flat frames, together with suitable dark frames, and the required
calibration files. To make a list of the appropriate raw frames with relevant information, use a
command like
> dfits KMOS*CAL*fits | fitsort tpl.id ins.filt1.id det.seq1.dit | grep skyflat

The MASTER_FLAT and XCAL/YCAL/LCAL files should match the wavelength of the sky flats. The
resulting sof may look like this (but with typically 3 SKY_FLAT frames):
> cat skyflat_h.sof
/share/KMOSdata/KMOS.2013-01-18T23:49:03.113.fits FLAT_SKY
/share/KMOScalib/master_dark.fits MASTER_DARK
/share/KMOScalib/master_flat_HHH.fits MASTER_FLAT
/share/KMOScalib/flat_edge_HHH.fits FLAT_EDGE
/share/KMOScalib/xcal_HHH.fits XCAL
/share/KMOScalib/ycal_HHH.fits YCAL
/share/KMOScalib/lcal_HHH.fits LCAL
/share/KMOScalib/kmos_wave_band.fits WAVE_BAND

Then execute the kmo_illumination recipe:
> esorex kmo_illumination skyflat_h.sof

One file will be produced, which is tagged with the waveband used.
illum_corr_###.fits Frame containing images of the internal flatfield uniformity for each IFU.

This frame has 48 extensions (data and noise for each of the 24 IFUs.)

HINTS
• Skyflat frames can be identified with the dpr.type keyword as FLAT,SKY.
• The first sky flat in a series is a test exposure to set the integration time. The subsequent 3 are the

ones to use. Check that the count levels in the raw data are at least several hundred (and ideally
more than 1000 cts per pixel) for a significant fraction of the spectral traces.

• The rotator angle does not matter since the flatfield spatial uniformity is independent of the
orientation of the KMOS instrument.

• The parameter range can be used to specify a particular (set of) wavelength range(s) over which
the illumination correction should be derived, e.g.
> esorex kmo_illumination –range=’1.50,1.75’ skyflat_h.sof

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

18 of 35

But the default ranges ought to be fine.
• It is important to include the FLAT_EDGE frame because, in order to minimize edge effects, the

recipe shifts the data on the raw frame so the slitlet edges match those of the flatfield. Without this
frame, the cross-correlation cannot be done.

• Useful QC parameters include:
QC.SPAT.UNIF RMS spatial uniformity of the internal flatfield

Figure 4: Images portraying the illumination correction in H-band (note that this was measured before
adjusting the arms to their final positions and so may look different to what you find). Given the large
gradients across some IFUs, this is definitely worth applying. The calibration positions of the arms
have now been adjusted so that the gradients are much smaller than shown here.

4.4.2 Using flatfield frames
This method has been used when processing data on R136 in Section 7 of Davies et al. (2013), and has
been implemented in a recipe called kmo_illumination_flat. The output is exactly as for the
original kmo_illumination recipe. The only difference is that the sof list should contain at least one
flatfield frame rather than the skyflats:
> cat illumflat_h.sof
/share/KMOSdata/KMOS.2013-09-17T21:33:24.240.fits FLAT_SKY_FLAT
/share/KMOScalib/xcal_HHH.fits XCAL
/share/KMOScalib/ycal_HHH.fits YCAL
/share/KMOScalib/lcal_HHH.fits LCAL
/share/KMOScalib/kmos_wave_band.fits WAVE_BAND

The FLAT_SKY_FLAT refers to one or more of the flatfield frames (at a single rotator angle) used for
kmo_flat in Section 4.2. Execute the kmo_illumination_flat recipe:
> esorex kmo_illumination_flat illumflat_h.sof

One file will be produced, as above.

4.5 Standard Stars
The final calibration is the standard star, and the recipe for this is basically a full science reduction (as
in Section 5.1) with some extra bits added on. Reduction is the same for both the
KMOS_spec_cal_stdstar and KMOS_spec_cal_stdstarscipatt templates. The only difference here
is whether 3 or 24 IFUs are processed – and therefore whether there are 3 or 24 raw files (flagged as
STD) in the sof list. Note that at least 2 STD frames are required to enable sky subtraction, but the recipe
will also work if only one STD frame is provided.

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

19 of 35

There is a script available also for this recipe, which can be executed in the usual way:
> easySPARK_std_star.sh /share/KMOSdata/KMOS.2012-11-28T04:58:21.683.fits

If you wish to do this manually, begin by making the sof list, which will look something like this:
> cat std_hip012345_k.sof
/share/KMOSdata/KMOS.2012-11-28T04:58:21.683.fits STD
/share/KMOSdata/KMOS.2012-11-28T04:58:52.901.fits STD
/share/KMOSdata/KMOS.2012-11-28T04:59:22.728.fits STD
/share/KMOScalib/xcal_KKK.fits XCAL
/share/KMOScalib/ycal_KKK.fits YCAL
/share/KMOScalib/lcal_KKK.fits LCAL
/share/KMOScalib/master_flat_KKK.fits MASTER_FLAT
/share/KMOScalib/illum_cor_KKK.fits ILLUM_CORR
/share/KMOScalib/kmos_wave_band.fits WAVE_BAND
/share/KMOScalib/kmos_solar_k_1700.fits SOLAR_SPEC
/share/KMOScalib/kmos_atmos_k.fits ATMOS_MODEL
/share/KMOScalib/kmos_spec_type.fits SPEC_TYPE_LOOKUP

Note that the last 3 lines are not mandatory. The situations for which they can be used, and their
impact, are described in Section 4.5.2.

Execute the kmo_std_star recipe:
> esorex kmo_std_star –save_cubes std_hip012345_k.sof

When the save_cubes option is set, the reduced cubes will be written to file, so that 6 files are created.
Writing out the cubes allows you to extract the spectra yourself if, for example, you want to use a
different aperture or to do additional cosmetic cleaning on the cubes.
std_cube_###.fits Frame containing cubes of the standard star. There are 48 extensions (data

and noise for 24 IFUs), but not necessarily all will contain data.
std_image_###.fits Collapsed images of the standard stars (24 extensions). Only the extensions

for IFUs used to observe the star will contain data.
std_mask_###.fits Spatial masks showing which pixels were used to extract the spectra (which

are those within the FWHM).
star_spec_###.fits

The extracted (integrated) spectra. The spectra are extracted from the
masked region, and then scaled so that the counts within the bandpass match
those in a spectrum extracted from the entire IFU field. No other scaling is
applied. The count level and exposure time can then be used for photometric
calibration.

telluric_###.fits The derived telluric correction spectrum – see Section 4.5.2 for details.
Always check this to make sure you are satisfied with the correction of the
stellar features. In some cases, it may require additional interactive work.

noise_spec_###.fits Estimate of the noise spectrum. For the 3-arm template, this is just based on
photon shot noise. For the 24-arm template, when there are enough sky
frames, it includes systematics. This can be important for longer exposures
of fainter stars.

HINTS
• Standard star frames can be identified with the dpr.type keyword as OBJECT,SKY,STD,FLUX (all

one designation), and are taken in sets of 4 or 25 frames (for the 3-arm and 24-arm options).

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

20 of 35

• The recipe selects a sky exposure for each IFU independently (the closest in time to the star
exposure), from among the exposures given in the sof list. This is reported in the output text, which
is also saved in the esorex.log file.

• The recipe will choose the calibrations at the closest available rotator angle (OBS.ROT.NAANGLE) to
the observations.

• Reconstruction is done using cubic-spline method by default. We would recommend not changing
this for the standard star.

• Flux calibration (see Section 4.5.1) is performed using the total flux in the IFU; but the extracted
spectrum – from which the telluric spectrum is made – is integrated only from pixels within the
measured FWHM (which encloses about half the total flux). If this doesn’t look good, you can
make a new extraction using kmo_extract_spec.

• Useful QC parameters include:
QC.SPAT.RES FWHM of the star in arcsec for each IFU (in std_image_###.fits)
QC.ZPOINT zeropoint for each IFU (in star_spec_###.fits) – see Section 4.5.1
QC.SNR mean signal-to-noise ratio of the extracted spectrum across the bandpass

4.5.1 Flux Calibration
If a magnitude for the star is given, the same recipe will perform a flux calibration and calculate the
zeropoint. The magnitude should match the band used for the observations and can be set in the
template using P2PP, in which case this calculation is done automatically. You can check this by
looking for the magnitude keyword:
> dfits KMOS.2013-01-26T02:35:36.929.fits | fitsort ocs.stdstar.mag

Alternatively, it can be set as a parameter when executing the recipe (which will override the
magnitude keyword):
> esorex kmo_std_star –save_cubes –mag=6.61 std_hip012345_k.sof

Note that for the HK band, the magnitudes for both bands should be given (H first, K second)
separated by a comma with no spaces:
> esorex kmo_std_star –save_cubes –mag=’6.71,6.61’ std_hip012345_hk.sof

The zeropoint is written as the QC parameter QC.ZPOINT and is defined so that
mag = qc.zpoint – 2.5log10(cts/sec)

where mag is the magnitude of a source that has a mean count rate of cts/sec per spectral pixel. You
can then convert the magnitude to a flux density. Putting these steps together you have
flux density = cts/sec × F0 × 10^[-0.4 × qc.zpoint]

where F0 is the zero magnitude flux density taken from the table below in whichever units are
preferred. If you want a line flux, integrate the counts over the line, convert the result to a flux density,
and multiply it by the spectral size of a pixel (given by the CDELT3 keyword in the cubes or the CDELT1
keyword in the extracted spectra).

Near-infrared magnitudes for stars are widely available from 2MASS. And so for estimating the
zeropoint in the YJ, J, HK, and K bands, the 2MASS bandpasses are used. In addition, 2MASS zero
magnitude flux densities are used for the throughput estimates. These are taken from Cohen, Wheaton,
& Megeath (2003; AJ, 126, 1090). Since the z band is poorly defined, for the IZ band we use a pseudo-
monochromatic 1µm flux density. One way to estimate this is to interpolate it from the KHJIR

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

21 of 35

magnitudes, where the latter 2 come from the USNO-B1 catalogue. The parameters used for KMOS
are summarised in the table below.

KMOS
band

2MASS
band

Band pass for
calibration Zero magnitude flux density

K K 2.028 –2.290 µm 4.283×10-10 W/m2/µm 4.65×109 ph/s/m2/µm

HK H & K 1.5365 – 1.7875 µm +
2.028 - 2.290 µm

1.133×10-9 W/m2/µm &
4.283×10-10 W/m2/µm

9.47×109 ph/s/m2/µm &
4.65×109 ph/s/m2/µm

H H 1.5365 – 1.7875 µm 1.133×10-9 W/m2/µm 9.47×109 ph/s/m2/µm
YJ J 1.154 – 1.316 µm 3.129×10-9 W/m2/µm 1.944×109 ph/s/m2/µm
IZ — 0.985 – 1.000 µm 7.63×10-9 W/m2/µm 3.81×1010 ph/s/m2/µm

4.5.2 Telluric Calibration
If the spectral type is provided then it may be possible to create a normalised telluric spectrum. This
can be set in the template using P2PP. You can check whether that has been done by looking for the
spectral type keyword:
> dfits KMOS.2013-01-26T02:35:36.929.fits | fitsort ocs.stdstar.type

Alternatively, it can be set as a parameter when executing the recipe:
> esorex kmo_std_star –save_cubes –startype=’B8III’ std_hip022112_k.sof

There are only a limited number of cases for which this software attempts to make a telluric spectrum:

G (ideally G2V) stars in the H, HK, or K bands: the recipe will divide out a solar spectrum and
correct for the blackbody temperature associated with the spectral type.
O, B, A, and F stars in any band: the recipe will fit and subtract the strongest H absorption lines
(making use of an approximate atmospheric model to help). This works best if there are no
more than a few lines across the band; so be aware that if there are many lines close together,
the result from this non-interactive procedure is unlikely to be satisfactory.

To process the data for G stars, you need to include the following 2 lines in the sof list:
/share/KMOScalib/kmos_solar_h_2400.fits SOLAR_SPEC
/share/KMOScalib/kmos_spec_type.fits SPEC_TYPE_LOOKUP

To process the data for OBAF stars, you need to include the following 2 lines in the sof list:
/share/KMOScalib/kmos_atmos_k.fits ATMOS_MODEL
/share/KMOScalib/kmos_spec_type.fits SPEC_TYPE_LOOKUP

Dedicated (and more sophisticated) tools are also available to create telluric spectra from standard star
spectra. For early A-type stars in any of these bands, an excellent option is described in Vacca,
Cushing, & Rayner (2003; PASP, 115, 389).

5 Science Reduction
Once you have a full set of calibrations, you are ready to process the science frames. This is best done
using the monolithic pipeline (Section 5.1) which is the most straightforward way but also very
flexible; it is possible instead to use the recipes one at a time which enables your own routines to be
used – perhaps adding extra processing steps or replacing a pipeline recipe.

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

22 of 35

5.1 Monolithic pipeline
This recipe performs all the standard processing steps: sky subtraction, flat fielding, illumination
correction, reconstruction, telluric correction, shifting, and finally combining. It is straightforward to
use, and also allows the user some degree of flexibility.

Before starting work on the science observations, move into KMOSscience, which is now your working
directory. Then, as for the calibrations, the first step is to create a sof list.

This can be done with an easySPARK script:
> easySPARK_sci_red.sh /share/KMOSdata/KMOS.2013-01-23T02:03:55.572.fits sof

which will make an sof list called sci_red_###.sof (where ### is the date/time in the TPL.START
keyword) that includes all the science exposures from the same template as the frame given. Omitting
the sof parameter will also allow the script to execute the recipe. But you may want to check the sof
list first, rename it, or add additional observations from other OBs.

The sof list will look something like that here, but most likely with more science frames:
> cat sci_obs.sof
/share/KMOSdata/KMOS.2013-01-23T02:03:55.572.fits SCIENCE
/share/KMOSdata/KMOS.2013-01-23T02:04:29.186.fits SCIENCE
/share/KMOScalib/xcal_YJYJYJ.fits XCAL
/share/KMOScalib/ycal_YJYJYJ.fits YCAL
/share/KMOScalib/lcal_YJYJYJ.fits LCAL
/share/KMOScalib/master_flat_YJYJYJ.fits MASTER_FLAT
/share/KMOScalib/illum_cor_YJYJYJ.fits ILLUM_CORR
/share/KMOScalib/telluric_YJYJYJ.fits TELLURIC
/share/KMOScalib/kmos_wave_band.fits WAVE_BAND
/share/KMOScalib/kmos_oh_spec_yj.fits OH_SPEC

All the observations are called SCIENCE, with no differentiation between sky and object. This is
because any particular frame may include both object and sky data, depending on the arm assignments.

The ILLUM_CORR and TELLURIC files are optional. If ILLUM_CORR is omitted, there will be no
correction for spatial uniformity of the internal flatfield; if TELLURIC is omitted, there can be no
correction for atmospheric transmission.

The OH_SPEC file is (in principle) also optional. However, it is required for the wavelength matching to
correct spectral flexure based on the OH lines in the science data, and we would recommend always
including it (see Section 7.4 for an example of the impact it can have). Spatial flexure is corrected – at
least to the extent of interpolating between the calibration frames – by default, unless you explicitly
specify otherwise.

Execute the kmo_sci_red recipe:
> esorex kmo_sci_red sci_obs.sof

There are 3 sets of output:
sci_reconstructed_###.fits Processed and reconstructed cubes, matching the input SCIENCE

files. The tag is the name of the input file. Only input files with at
least one object or reference IFU (OCS.ARMi.TYPE=’O’ or ’R’) will
appear as an output file; and in these files, only object or reference
IFUs will be processed, the other extensions will be empty.

sci_combined_#####.fits A set of files containing the final combined cubes (1 data and 1

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

23 of 35

exp_mask_#####.fits

noise extension in each), constructed by shifting and combining the
data for each IFU. There is one output file for each named object or
reference source found in the input SCIENCE files, and this name is
used as the tag.
This is an image in which the value of each pixel indicates how
many frames were combined at that spatial location. It won’t be
created for data from the mapping templates. This is actually a
feature of kmo_combine, which has been propagated to
kmo_sci_red.

OPTIONS
Since this is a work-horse recipe, there are a number of options which you may find useful. These can
be used together if it is appropriate.

• The pix_scale parameter allows you to set the spatial pixel scale for the reconstructed cube. The
default (natural scaling) is 0.2arcsec, but any scale can be set. The example here is what you may
want to use if, in the observing template, you set the dithering pattern to be at half-pixel offsets:
> esorex kmo_sci_red –pix_scale=0.1 sci_obs.sof

Don’t forget to also create the illumination correction frame at the same pixel scale.

• The no_combine parameter will stop the recipe after the sci_reconstructed_###.fits frames
have been created. It suppresses the creation of combined cubes.
> esorex kmo_sci_red –no_combine sci_obs.sof

• The no_subtract option will process each SCIENCE frame given in the sof independently of the
others, without looking for or subtracting any sky exposures. With this option, all active IFUs
(including sky IFUs) will be processed and reconstructed. In addition, the no_combine option is
also implicitly set. This is the default behaviour if only 1 SCIENCE frame is listed in the sof.
> esorex kmo_sci_red –no_subtract sci_obs.sof

• If you are interested in only 1 object or only in specific IFUs, and want to save time processing,
these can be specified as parameters.
> esorex kmo_sci_red –name=’gal21’ sci_obs.sof

will process only IFUs labelled with OCS.ARM[1-24].NAME=’gal21’.
> esorex kmo_sci_red –ifus=”3;14;3;14” sci_obs.sof

will process only IFU 3 from the 1st SCIENCE frame, IFU 14 from the 2nd, IFU 3 again from the 3rd,
and IFU 14 again from the 4th. In this example, there must be exactly 4 SCIENCE exposures given.
In both cases, sky frames are identified as before.

• Various options are available for specifying the offsets when shifting the cubes (see Section 5.2 for
details). This is done with the method parameter, which can be set to ‘header’, ‘none’,
‘center’, or ‘user’. For example, if you are processing data taken at different times, and the
sources are clearly visible in individual exposures, you may prefer to derive shifts from the sources
themselves. In this case you might try:
> esorex kmo_sci_red –method=’center’ sci_obs.sof

• Setting the edge_nan parameter will, as part of the shift-and-combine stage, set the single row or
column of pixels at each edge of the slitlets to be NaN. This is an effective way of avoiding ‘edge
effects’. Because this is done as part of the kmo_combine recipe, you will not see any change in the
sci_reconstructed_###.fits frames.
> esorex kmo_sci_red –edge_nan sci_obs.sof

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

24 of 35

• Setting the background parameter will, as an additional step before combining frames, subtract a
single constant value from each IFU. This is calculated as the mode of the pixel values in the cube
after excluding the brightest 25%, and is the best approximation to a uniform background level that
can be made from the data itself.
> esorex kmo_sci_red –background sci_obs.sof

This routine cannot be applied blindly, since its success depends on how much an object fills a data
cube. In particular, it will not work with spatially extended continuum sources. The user must
decide whether it is appropriate for their data.

• Flux conservation is not applied during interpolations unless the parameter flux is explicitly set
(due to sky frames typically being subtracted before reconstruction, and complications arising from
the changing background level). In extreme cases this can make as much as 10% difference to the
derived fluxes, so you should consider using it. But note that it will be anyway disabled for any
cubes in which the total flux is not sufficiently greater than the noise. The flux is calculated simply
as the total counts in each cube, and it can be done with or without the background option (i.e. the
flux is calculated with/without background subtraction, as described above, from both the input
and output data).
> esorex kmo_sci_red –flux sci_obs.sof

• Wavelength correction may be necessary to account for spectral flexure in order to, for example,
subtract OH lines well. This has been implemented in the kmo_reconstruct recipe, and the action
propagated into kmo_sci_red. No parameter needs to be set, but the appropriate static calibration
file (kmos_oh_spec_#.fits) must be included in the sof list and tagged as OH_SPEC. For each
reconstruction, the recipe will derive and apply a modification to lcal_###.fits based on the
measured wavelengths of prominent OH lines (see Davies et al. 2007). This is done internally, and
the file itself remains unchanged. It requires a double-pass (a preliminary reconstruction is done to
derive the wavelength offset, and then the proper reconstruction is done using the corrected
calibration) so that each product has been interpolated only once. With kmo_sci_red, this only
makes sense if combined with the no_subtract or sky_tweak option because object and sky
frames will most likely require different corrections:
> esorex kmo_sci_red –no_subtract sci_obs.sof

where the sof list includes a line similar to:
/share/KMOScalib/kmos_oh_spec_yj.fits OH_SPEC

• Enhanced OH removal, via spectral scaling based on the OH line strengths lines (see Davies et al.
2007), can be included with the sky_tweak parameter:
> esorex kmo_sci_red –sky_tweak sci_obs.sof

In effect, this is very similar to the following steps (which can also be executed separately)
> esorex kmo_sci_red –no_subtract sci_obs.sof
> esorex kmo_sky_tweak framepairs.sof
> esorex kmo_combine allproducts.sof

where the 2nd step is repeated as required for each pair of object/sky frames, listed each time in
framepairs.sof; and the product name changed to be unique. The sof in the last step then simply
contains a list of all the products.
If the intermediate reconstructed cubes of the sky-tweak-process should be saved to disk, set
save_interims (save_interims can’t be set here).

• The recipe writes out a file called obj_sky_table.txt that contains a table showing the object-
sky associations for each IFU in each exposure. This can be edited so that any IFU from any
exposure can be subtracted from any other IFU without any restrictions, and then read back in as
follows:
> esorex kmo_sci_red –obj_sky_table=’obj_sky_table.txt’ sci_obs.sof

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

25 of 35

Details of the table format are given in Section 5.1.1.

• The velocity_offset option enables one to apply a constant velocity offset (in km/s) to the data
during reconstruction (as with flexure compensations, this is applied to the internal spectral
calibration file and so does not lead to additional interpolations of the data). This can be useful if,
for example, one wants to account for differences in the earth’s orbital velocity between OBs
executed on different dates:
> esorex kmo_sci_red –velocity_offset=30 sci_obs.sof

As always, if any of these options doesn’t work as expected, please let us know.

HINTS
• Science frames can be identified with the dpr.type keyword as OBJECT,SKY (all one designation).
• For each IFU, object and sky exposures are distinguished by the OCS.ARMi.TYPE keyword. For

each object exposure in an IFU, the pipeline automatically selects the sky exposure in the same
IFU taken closest in time. For more information on this topic, see Section 5.1.1

• Only frames tagged with OCS.ARMi.TYPE = O (object) or R (reference source) are reconstructed by
the monolithic pipeline; sky frames (S) are not. The exception is if only a single SCIENCE frame is
listed in the sof, or if the no_subtract option (described above) is set. Note also that using
kmo_reconstruct directly will reconstruct all IFUs regardless of their tag.

• The default interpolation method is cubic spline; other methods can be specified. A description of
the methods implemented, and a comparison of their performance is given in Davies et al. (2013).

• The parameters and input files used by this, or any other, recipe to generate the output files can be
found by looking for PRO keywords in the primary header of the products:
> dfits sci_reconstructed_KMOS.2013-01-23T02:03:55.572.fits | grep PRO

5.1.1 Object-Sky and Object ID-IFU Associations
So that the user can see which sky IFU/exposure has been allocated to each object IFU/exposure, the
recipe writes out two association tables to the console, the first is written as well to the file
obj_sky_table.txt. If kmo_sci_red is executed with the no_subtract option, all SCIENCE frames
in the sof will be listed (otherwise only those with at least one arm tagged as OCS.ARMi.TYPE = O are
included).

In the first section of the first table, all the SCIENCE frames in the sof are listed and given an
identification number.
In the second section of the first table, columns correspond to the 24 IFUs, and rows correspond to
each exposure indexed in the first table. For each IFU in each exposure, the tag is shown (O/S/R for
object/sky/reference) and underneath each object or reference tag is the identification of the exposure
from which the corresponding sky is taken. Under each sky tag is simply a dot.

Object/sky associations of frames tagged as: SCIENCE

index: filename:
0: /tera2/2013-03-29/KMOS.2013-03-30T03:29:11.293.fits
1: /tera2/2013-03-29/KMOS.2013-03-30T03:39:27.787.fits
2: /tera2/2013-03-29/KMOS.2013-03-30T03:50:35.821.fits
3: /tera2/2013-03-29/KMOS.2013-03-30T04:01:40.726.fits
4: /tera2/2013-03-29/KMOS.2013-03-30T04:12:44.391.fits
5: /tera2/2013-03-29/KMOS.2013-03-30T04:23:00.912.fits
6: /tera2/2013-03-29/KMOS.2013-03-30T04:34:08.987.fits
7: /tera2/2013-03-29/KMOS.2013-03-30T04:45:11.579.fits

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

26 of 35

-
IFU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
frame # 0: /tera2/2013-03-29/KMOS.2013-03-30T03:29:11.293.fits
 type: S O O O O O O O O S O O O O O O O O O O O S S O
 sky in #: . 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 1 1 1 . . 1
frame # 1: /tera2/2013-03-29/KMOS.2013-03-30T03:39:27.787.fits
 type: S
 sky in #: .
frame # 2: /tera2/2013-03-29/KMOS.2013-03-30T03:50:35.821.fits
 type: S O O O O O O O O S O O O O O O O O O O O S S O
 sky in #: . 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 1 1 1 . . 1
frame # 3: /tera2/2013-03-29/KMOS.2013-03-30T04:01:40.726.fits
 type: S O O O O O O O O S O O O O O O O O O O O S S O
 sky in #: . 5 5 5 5 5 5 5 5 . 5 5 5 5 5 5 5 5 5 5 5 . . 5
frame # 4: /tera2/2013-03-29/KMOS.2013-03-30T04:12:44.391.fits
 type: S O O O O O O O O S O O O O O O O O O O O S S O
 sky in #: . 5 5 5 5 5 5 5 5 . 5 5 5 5 5 5 5 5 5 5 5 . . 5
frame # 5: /tera2/2013-03-29/KMOS.2013-03-30T04:23:00.912.fits
 type: S
 sky in #: .
frame # 6: /tera2/2013-03-29/KMOS.2013-03-30T04:34:08.987.fits
 type: S O O O O O O O O S O O O O O O O O O O O S S O
 sky in #: . 5 5 5 5 5 5 5 5 . 5 5 5 5 5 5 5 5 5 5 5 . . 5
frame # 7: /tera2/2013-03-29/KMOS.2013-03-30T04:45:11.579.fits
 type: S O O O O O O O O S O O O O O O O O O O O S S O
 sky in #: . 5 5 5 5 5 5 5 5 . 5 5 5 5 5 5 5 5 5 5 5 . . 5

In a second table the associations between object IDs and IFUs are listed. This is analogous to the
object-sky table, but shows which IFUs in which exposures were used for each object. Following the
convention above, with the no_subtract option, the sky tag is also handled as an object (not depicted
in the table below).

Object ID/IFU associations to process:

index: object IDs assigned to arms
 1: objA (6 occurences)
 2: objB (6 occurences)
 3: objC (6 occurences)
 4: objD (6 occurences)
 5: objE (6 occurences)
 6: objF (6 occurences)
 7: objG (6 occurences)
 8: objH (6 occurences)
 9: objI (6 occurences)
 10: objJ (6 occurences)
 11: objK (6 occurences)
 12: objL (6 occurences)
 13: objM (6 occurences)
 14: objN (6 occurences)
 15: objO (6 occurences)
 16: objP (6 occurences)
 17: objQ (6 occurences)
 18: objR (6 occurences)
 19: objS (6 occurences)
 20: objT (6 occurences)
-
IFU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
frame # 0: /tera2/2013-03-29/KMOS.2013-03-30T03:29:11.293.fits
 name ID: . 1 2 3 4 5 6 7 8 . 9 10 11 12 13 14 15 16 17 18 19 . . 20
frame # 2: /tera2/2013-03-29/KMOS.2013-03-30T03:50:35.821.fits
 name ID: . 1 2 3 4 5 6 7 8 . 9 10 11 12 13 14 15 16 17 18 19 . . 20
frame # 3: /tera2/2013-03-29/KMOS.2013-03-30T04:01:40.726.fits
 name ID: . 1 2 3 4 5 6 7 8 . 9 10 11 12 13 14 15 16 17 18 19 . . 20

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

27 of 35

frame # 4: /tera2/2013-03-29/KMOS.2013-03-30T04:12:44.391.fits
 name ID: . 1 2 3 4 5 6 7 8 . 9 10 11 12 13 14 15 16 17 18 19 . . 20
frame # 6: /tera2/2013-03-29/KMOS.2013-03-30T04:34:08.987.fits
 name ID: . 1 2 3 4 5 6 7 8 . 9 10 11 12 13 14 15 16 17 18 19 . . 20
frame # 7: /tera2/2013-03-29/KMOS.2013-03-30T04:45:11.579.fits
 name ID: . 1 2 3 4 5 6 7 8 . 9 10 11 12 13 14 15 16 17 18 19 . . 20

In this example, one can see that IFUs 1, 10, 22, and 23 are always on sky, and so have no
associations; and that the exposure sequence for all other IFUs is OSOO-OSOO. For all IFUs in frame 3
(KMOS.2013-03-30T04:01:40.726.fits), the sky has been taken from the corresponding IFUs in
frame 5 (KMOS.2013-03-30T04:23:00.912.fits). This is because, in the sequence above, the sky
frames are spaced symmetrically about this object frame, and the 2nd one just happens to have been
taken slightly closer in time. This may not be what one wants, since that sky frame is then used 4 times
while the other is used only twice. So it is possible to edit the table.

The first table, which is as well written to disk, can be edited and read back in by executing
> esorex kmo_sci_red –obj_sky_table=’obj_sky_table.txt’ sci_obs.sof

Example 1
We would like to subtract the sky from another exposure for IFU 3. In this case we edit
obj_sky_table.txt in the following way:
IFU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
frame # 0: /tera2/2013-03-29/KMOS.2013-03-30T03:29:11.293.fits
 type: S O O O O O O O O S O O O O O O O O O O O S S O
 sky in #: . 1 5 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 1 1 1 . . 1

When kmo_sci_red is executed again, the changes should be displayed in the console accordingly (but
no new obj_sky_table.txt is wriiten to file in this case).

Example 2
We realized, that in the OB preparation obj and sky has been switched accidentally: object should be in
frame #1 and sky in frame #0:
IFU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
frame # 0: /tera2/2013-03-29/KMOS.2013-03-30T03:29:11.293.fits
 type: S O S O O O O O O S O O O O O O O O O O O S S O
 sky in #: . 1 . 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 1 1 1 . . 1
frame # 1: /tera2/2013-03-29/KMOS.2013-03-30T03:39:27.787.fits
 type: S S O S
 sky in #: . . 0 .

Example 3
We would like to subtract the sky from the same exposure, but from another IFU, e.g. subtract sky in
IFU 10 from object in IFU 2, both in frame #0:
IFU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
frame # 0: /tera2/2013-03-29/KMOS.2013-03-30T03:29:11.293.fits
 type: S O O O O O O O O S O O O O O O O O O O O S S O
 sky in #: . 0/10 1 1 1 1 1 1 1 . 1 1 1 1 1 1 1 1 1 1 1 . . 1

It is important to choose IFUs from the same detector and to provide an OH_SPEC frame in this case
(see KMOS User Manual, Sec. 3.4.5) to reduce residuals due to the cross-arm sky subtraction.

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

28 of 35

Figure 5: An illustration of the quality of sky subtraction, on the left for the “simple” sky subtraction
method, and on the right using the “optimal” sky subtraction method following the algorithm presented
in Davies et al. (2007). The matrix shows arm-to-arm subtraction in the same exposure, e.g. the sky
residual in IFU j using IFU k to do sky subtraction in the same exposure. For comparison, the vector at
the bottom shows the sky residual when the sky is subtracted from the same IFU, but from the
subsequent exposure, e.g. IFU j – IFU j in the classical A-B sequence.

5.1.2 Mapping & Mosaics
The mapping modes of KMOS have specific templates to perform the observations. But the data are
treated by the pipeline in exactly the same way as for any other science observation. This means that
they can be reduced by the monolithic pipeline with the single command
> esorex kmo_sci_red sci_obs.sof

as given above. However, the user should note that, other than the options already described, the
pipeline makes no attempt to perform any matching (scalings, offsets, etc) between the individual IFUs
and pointings. This rather complex task is left to the user, since how they are done depends on the
individual data set.

It is often useful to know which IFUs in which exposures makes up the various parts of the patchwork
mosaic. Figure 6 and Figure 7 show this information for the 8-arm and 24-arm mapping modes
respectively.

Figure 6: Left – Arrangement of the IFUs used for the Mapping8 mosaic mode. Right – order (from A
to I) of the 9 dithers performed during the Mapping8 mode. The IFUs are separated by 8.1” and each
dither is 2.7” so that, at the end, there is a 0.1” (half-pixel) overlap between adjacent pieces.

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

29 of 35

Figure 7: Left – Arrangement of the IFUs used for the Mapping24 mosaic mode. Right – order (from
A to P) of the 16 dithers performed during the Mapping24 mode. The IFUs are separated by 10.8” and
each dither is 2.7” so that, at the end, there is a 0.1” (half-pixel) overlap between adjacent pieces.

5.1.3 Improving Cosmetics
For a number of reasons, there may well be many deviant pixels in the reconstructed cubes. These can
be effectively cleaned using a 3D version of van Dokkum’s L.A.Cosmic routine (van Dokkum P.,
2001; PASP, 113, 1420). We note that because of the strong OH lines in the raw data, and the possible
presence of continuum sources, the routine is more effective (and safer to use) when applied to the
reconstructed cubes. An IDL script called lac3dxtn.pro is available for this. Please contact the
authors of this document if you wish to use it.

CAUTION

While the routine has been tested successfully with its default parameters on a variety of sources, it
is the user’s responsibility to check it removes only bad pixels without impacting the source itself.

5.1.4 Multi-reconstruct
The standard processing steps first reconstruct each cube, and then afterwards shift and combine them.
Instead of performing this 2-step process, the calibration files XCAL/YCAL/LCAL allow one to put all
raw data into a huge ‘meta-detector’ frame with their respective ‘meta-calibrations’ and reconstruct the
entire dataset in one go. There may be some advantages to doing things this way. Most obviously, it
avoids the additional interpolation during sub-pixel shifting, and it makes better use of dithered
observations (which is especially important for the true 3D interpolation methods described above). If
you want to experiment with this, then use the kmo_multi_reconstruct recipe. Originally, it was
intended only to perform reconstruction, but has evolved into a full pipeline with fairly similar
functionality to kmo_sci_red. Still, it is rather an advanced recipe with some parameter combinations
not being supported like in kmo_sci_red, so we recommend this recipe rather to advanced users. It is
described in Davies et al. (2013) so no further discussion is given here.

5.2 Work-flow one step at a time
The monolithic pipeline performs the standard steps for a scientific reduction. These steps can be
performed one at a time. The following example shows how. But before embarking on this, we
recommend you check whether the options available for kmo_sci_red will do what you want, since
that would be a much easier path to follow.

If you want to use your own interpolation algorithm, note that the XCAL, YCAL, and LCAL files contain
all the information necessary to reconstruct a cube. They provide the (x,y,λ) location in the cube of

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

30 of 35

each illuminated detector pixel. The x and y locations are integer distances in milliarcsec along the
horizontal and vertical axes from the centre of each IFU field; the λ location along the spectral axis is
given in microns. The IFU identification is encoded in the XCAL and YCAL frames as the number after
the decimal point. These 3 files are used to perform reconstruction. You can also use them with your
own reconstruction algorithm.

Alternatively, these frames can be used to map a model of the observed object onto the data while it is
still in the detector format, i.e. before any re-sampling or interpolation. This may be a preferred route
to the analysis.

In either case, it is important to realise that that the calibration frames produced by the pipeline are
generated without any flexure correction. This is applied only internally within recipes and is tailored
each time to the match the science frames being processed.

5.2.1 Preparation: sky subtraction and flatfielding
First find out the Nasmyth angle at which the observations were taken and extract the matching
flatfield frames from the MASTER_FLAT. Here the -71° (=289°) of the data most closely matches 300° in
the calibration frames. The data at this angle are extracted using the recipe kmo_fits_strip.
> dfits KMOS.2013-01-25T05:38:59.853.fits | fitsort ocs.rot.naangle
FILE OCS.ROT.NAANGLE
KMOS.2013-01-25T05:38:59.853.fits -70.724
> esorex kmo_fits_strip –noise=TRUE -angle=300 master_flat_YJYJYJ.fits
> mv strip.fits flat_YJ_300.fits

Then for each object frame, subtract the sky, divide by the flatfield, apply the illumination correction,
and reconstruct it. The first 3 steps are done using kmo_arithmetic. The default output from this is
called arithmetic.fits. It can either then be renamed using a shell command or, as done here, you
can use the file_extension parameter to specify a name suffix.
> esorex kmo_arithmetic –op=’-’ –file_extension=’34sub35’ KMOS.2013-01-25T05:38:59.853.fits

 KMOS.2013-01-25T05:49:28.991.fits
> kmo_arithmetic –op=’/’ –file_extension=’divflat’ arithmetic_34sub35.fits flat_YJ_300.fits
> kmo_arithmetic –op=’/’ –file_extension=’preproc34’ arithmetic_divflat.fits

 illum_corr_YJYJYJ.fits

5.2.2 Reconstruction
You are now ready to reconstruct the data. This can be done with an easySPARK script
> easySPARK_reconstruct.sh arithmetic_preproc34.fits

perhaps specifying explicitly the interpolation method that should be used, for example
> easySPARK_reconstruct.sh arithmetic_preproc34.fits CS

Or you can create an sof list (e.g. called reconstruct_0034.sof) which contains the following files:
arithmetic_preproc34.fits OBJECT
$KMOS_CALIB/xcal_YJYJYJ.fits XCAL
$KMOS_CALIB/ycal_YJYJYJ.fits YCAL
$KMOS_CALIB/lcal_YJYJYJ.fits LCAL
$KMOS_CALIB/kmos_wave_band.fits WAVE_BAND
$KMOS_CALIB/kmos_oh_spec_yj.fits OH_SPEC

Note that it is important to include the OH_SPEC file since it allows spectral flexure to be corrected
using OH lines in the science data. Spatial flexure is compensated to some extent (by interpolating
between calibration frames) unless you explicitly specify otherwise.

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

31 of 35

And then execute the two commands (specifying the interpolation method using the method parameter
if required, for example, –method=’CS’ is the default)
> esorex kmo_reconstruct reconstruct_0034.sof
> mv cube_object.fits cube_OBS025_034.fits

Currently, cubes can only be reconstructed so that the top of the IFU is up (although this will change in
the near future). As such, it is important to refer to the WCS parameters in the header to check how the
IFU is oriented on sky. The relevant keywords are:
ocs.rot.offangle how much the IFU fields in KMOS are (all) rotated with respect to the sky.
cd1_1, cd1_2,
cd2_2, cd2_1

define the orientation of the IFU spatial axes in the world coordinate system.

5.2.3 Shifting and Combining
Once all the frames have been reconstructed, the cubes can then be combined. It is important first to
make sure that they are all oriented the same way (i.e. north is up). If, during the observations,
ocs.rot.offangle ≠ 0 then the recipe kmo_rotate can be used to de-rotate the data (see Section 6.5
for details). For rotations of multiples of 90°, the pixels are just reshuffled; other rotations require
interpolation.

Both shifting and combining is done with the kmo_combine recipe. Integer shifts are handled simply
by updating the WCS reference point in the header; sub-pixel shifts require interpolation. To shift and
combine a set of files, list them in a sof (no tag is required), and execute kmo_combine. For this recipe,
the default action is to combine objects by name or, if a mapping template was used, to combine all
IFUs together. One can instead specify either which IFUs to combine (1 from each file in the sof list)
or an object name (the recipe then finds which IFUs have this object name):
> esorex kmo_combine –method=’header’ –name=’gal21’ –cmethod=’median’ objectcubes.sof

Or you can specify which IFUs to combine by giving a list with a number in the range 1-24 for each
frame in the sof list. In the example here, the object is always in IFU 1:
> esorex kmo_combine –method=’header’ –ifus=’1;1;1;1;1;1’ –cmethod=’median’ objectcubes.sof

The method parameter specifies how the dither offsets should be determined; and the cmethod
parameter indicates how the pixel values should be combined.

Edge effects may become apparent in some circumstances due to a slight mismatch between the
position on the detectors of flatfield traces and science data (residual spatial flexure). A simple way to
deal with this is to trim off the edges of the slitlets (i.e. the top and bottom rows of IFUs 1-16 and the
left and most columns of IFUs 17-24). The easiest way is to set them to NaN, and this is included as an
option for kmo_combine (see also options for kmo_sci_red in Section 5.1):
> esorex kom_combine –edge_nan –name=’gal21’ objectcubes.sof

Note that using this option for data taken in a mapping mode is not recommended since it will
probably result in a grid of NaN values outlining each IFU pointing in the combined map.

6 Other Useful Recipes
The full list of recipes has already been given in Section 2.2.1. Here we highlight a few that might be
useful.

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

32 of 35

6.1 Simple Mathematics
The recipe kmo_arithmetic has already been encountered in Section 5.2. It can be used in many
situations. A few examples are given here. The output frame is called arithmetic.fits by default but
can have a suffix added if one uses the file_extension parameter.

Subtract a (raw) sky frame from an object frame:
> esorex kmo_arithmetic –op=’-’ objectframe.fits skyframe.fits

Divide the spectrum at each spatial position in cube by a telluric spectrum:
> esorex kmo_arithmeitc –op=’/’ cube.fits telluric.fits

Add 2 cubes together:
> esorex kmo_arithmetic –op=’+’ cube1.fits cube2.fits

Raise a spectrum by some power, to account for differing airmass between object and standard star:
> esorex kmo_arithmetic –op=’^’ telluric.fits 1.1

Multiply a cube by a constant:
> esorex kmo_arithmetic –op=’*’ cube1.fits 6.3

6.2 Basic Statistics
Basic statistical properties of the data can be calculated using
> esorex kmo_stats KMOS.2013-01-22T00:40:42.326.fits

<blah>
[INFO] kmo_stats: [tid=000] ---
[INFO] kmo_stats: [tid=000] |DET.1.DATA|DET.2.DATA|DET.3.DATA|
[INFO] kmo_stats: [tid=000] 1. #pixels: | 4194304 | 4194304 | 4194304 |
[INFO] kmo_stats: [tid=000] 2. #finite pix.: | 4194304 | 4194304 | 4194304 |
[INFO] kmo_stats: [tid=000] 3. mean: | 100.0005 | 11.13203 | 8.771374 |
[INFO] kmo_stats: [tid=000] 4. stdev: | 996.045 | 416.4 | 362.2933 |
[INFO] kmo_stats: [tid=000] 5. mean w. rej.: | 1.187879 |-0.063260 |-0.250587 |
[INFO] kmo_stats: [tid=000] 6. stdev w. rej.:| 1.997403 | 1.518527 | 1.530504 |
[INFO] kmo_stats: [tid=000] 7. median: | 1.416667 |0.0133333 |-0.186666 |
[INFO] kmo_stats: [tid=000] 8. mode: |0.7498566 |-0.136713 |-0.317835 |
[INFO] kmo_stats: [tid=000] 9. noise est.: | 1.592248 | 1.447667 | 1.460024 |
[INFO] kmo_stats: [tid=000] 10. min. value: |-385.6167 | -271.98 |-2016.683 |
[INFO] kmo_stats: [tid=000] 11. max. value: | 107723.6 | 95957.1 | 110734.2 |
[INFO] kmo_stats: [tid=000] ---

Obviously, if one uses this on a reconstructed cube, there will be 24 or 48 columns of data. Since the
lines will wrap, this is going to be tricky to follow. So the data are written into a fits file called
stats.fits which has extensions to match the input file. And one can also re-direct the output to a
text file:
> esorex kmo_stats cube_object.fits > cube_object_stats.txt

6.3 Make Images
The recipe kmo_make_image allows one to combine spectral slices of a cube (collapse the cube) to
make an image. It is possible to specify one or more spectral ranges to use; and if an OH spectrum is
provided, one can specify that spectral regions close to bright OH lines should be omitted. As an
example, the command
> esorex kmo_make_image -range=’1.52,1.54;1.57,1.59’ cube_OBS022_0049_NN.fits

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

33 of 35

will create the file make_image.fits from cube_OBS022_0049_NN.fits, using data within the
spectral ranges 1.52-1.54µm and 1.57-1.59µm.

6.4 Extract Spectra
The recipe kmo_extract_spec allows one to extract a spectrum from each cube in a file. Several
methods are available to integrate the pixels: one can provide a spatial mask (which is multiplied into
each spectral slice of the cube before spatially integrating the result); one can request that such a mask
is generated automatically from the data; or one can specify a circular aperture (pixels whose centres
lie within this aperture are used). These 3 options are specified by the mask_method parameter as
‘mask’, ‘optimal’, or ‘integrated’ (the default) respectively. An example could be
> esorex kmo_extract_spec –mask_method=’optimal’ –save-mask cube_OBS022_0049_NN.fits

In this example, the recipe creates 2 output files: the extracted spectrum, as well as the mask that was
derived from the data and used to generate the spectrum.

Of course, there are other ways to extract spectra – for example, one could keep adding spectra from
individual pixel (in order of brightness) until the signal-to-noise stops increasing. The methods here
are designed to be simple and flexible.

6.5 Rotate Cubes
While the pipeline can handle shifting and combining data that is not aligned with north, it cannot (yet)
deal with data at a variety of offset angles. The recipe kmo_rotate can be used to rotate cubes so that
they north points in the same direction for all of them, or to rotate cubes so that north points upwards.
An example of its usage is:
> esorex kmo_rotate –rotations=35 cube_OBS022_0049.fits

It is important to note that by default this recipe (and also kmo_shift) do not extrapolate. Thus, the
spatial extent of the region with finite data values will decrease. If you do not want to this to happen,
you can specify the extrapolate parameter:
> esorex kmo_rotate –rotations=35 –extrapolate cube_OBS022_0049.fits

6.6 Copy Cube Sections
To extract a section of a cube, you can use the recipe kmo_copy, specifying the starting point and size
in each dimension in pixels. To extract a cube covering the same spatial extent, but only a limited
wavelength range, one can do:
> esorex kmo_copy –z=1500 –zsize=300 cube_OBS022_0049.fits

This recipe also has a useful feature that it can strip off any edges that contain just NaN values:
> esorex kmo_copy –autocrop cube_OBS022_0049.fits

7 Troubleshooting
In this section, we show a few features we’ve noticed that we’d rather not have. Some have a simple
solution, others are more tricky.

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

34 of 35

7.1 Detector Readout Channels
Do your reconstructed data have stripes like those shown in Figure 8? This is caused by temporally
variable levels in the read-out channels of the detectors. The effect is only ~1 count or so, but is an
issue when observing very faint sources. We have developed an experimental routine to correct for this
– but it involves processing the data twice: once so that the effect can be measured; then a second time
after it has been corrected (which has to be done as the first step). One also needs to be cautious that
any objects in the IFUs are compact so that the effect can be measured properly. If you wish to try the
routine, please contact the authors of this document.

Figure 8: images created by collapsing cubes from one H-band exposure in a mosaic. IFUs 1-8 are
from left to right along the top row; IFUs 9-16 along the middle row, and IFUs 17-24 along the bottom
row. There are (parts of) sources in only IFUs 15 & 16. The striping effect (with a period of 3-4
slitlets) is apparent in nearly all of the other others. And in IFU 24, one can see an odd-even effect
across a few slitlets.

7.2 Undersampling
Does your spectrum have a slow ripple pattern superimposed on it, like that shown in Figure 9?

Figure 9: Rather extreme example of the ripples (with a period of 150-200 pixels, or about 0.05µm)
that can be seen in stellar spectra if the seeing is so good that the star is spatially undersampled. This
example is for cubic spline interpolation in 0.35” seeing. For nearest neighbour reconstruction the
effect is more severe and appears as discontinuities. In either case, it can only be avoided by better
sampling – which is what the multi-reconstruct recipe provides (see Section 5.1.4).

7.3 Mismatched Calibrations
Do your reconstructed images look offset, like those in Figure 10?

 SPARK INstructional Guide
for KMOS data

Doc No: VLT-MAN-KMO-146611-009
Version: 1.5

Author R.Davies, A. Agudo Berbel,
E. Wiezorrek

Date: 05.03.14

35 of 35

Figure 10: Example of images that appear rather offset. This is a classical effect if the calibrations are
not matched to the data. The reconstruction has done its job, but the data were not in the locations on
the detector where the calibrations indicated they should be – perhaps because the grating is in a
slightly different position (here by about 4 pixels). This can easily be corrected by taking new
calibrations.

7.4 Discontinuous Velocity Field
Does your velocity field have discontinuities between exposures, as is seen in Figure 11? This is a
result of the spectral flexure, which is different between segments. In addition, between exposures 2
and 3, the rotator angle moved from >150° to <150° and so the calibration angle changed. This caused
an additional jump is wavelength. It is particularly obvious in segment 2 because this is the angle at
which spectral flexure has the greatest impact in that segment. The problem can easily be remedied by
enabling wavelength matching as described in Section 5.1.

Figure 11: velocity field of Brg line in a mosaic of part of R136. Left: spectral flexure means that
discontinuities between instrument segments are apparent, and (even more obvious) for segment 2
between the 2nd and 3rd exposures. Right: with wavelength matching using the OH lines, the spectral
flexure is corrected quite well. See Figure 7 to help identify IFUs and exposures in this large mosaic.

___oooOOOooo___

