

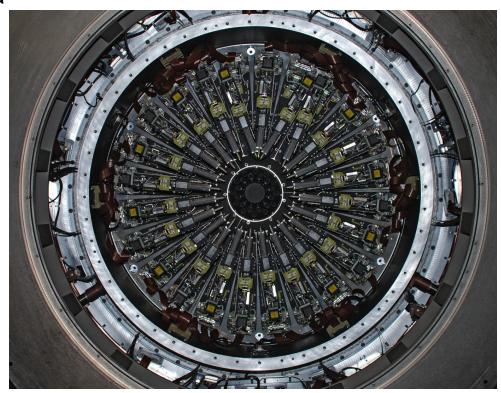
KMOS Pipeline Tutorial

Alex Agudo Berbel

Frame format

Calibration Recipes

Data Reconstruction


Science Reduction Recipes

Common Issues

Recapitulation

- KMOS: K-band Multiple-Object cryogenic integral field Spectrograph designed for intermediate resolution spectroscopy in the 0.8-2.5µm range
- First of its kind at a 8m class telescope
 - Similar project: SINFONI (single IFU)
- 24 robotic pickoff arms patrol a 7.2 arcmin diameter field each of which feeds 2.8x2.8 arcsec FoV sampled at 0.2 arcsec to an image slicing IFU
- The IFUs are consolidated in groups of 8 which feed one of 3 identical spectrographs providing R~3500 spectra in the H, HK, IZ, K & YJ bands

Key Specifications

General

 Rotating Mass 	2.4 t
 Total Mass 	9.5 t
 Operating temperature 	-140 °C
Optical Throughput	~30%

Hardware

- 24 robotic pick-off arms
 - · arranged in 2 layers
 - · divided into 3 sections
- 3 spectrographs
- 3 Hawaii-2RG detectors 2048 x 2048 pix

Field of View, Resolution

- Telescope Patrol Field 7.2 arcmin
- IFU
 - FoV
 Size
 Pixel size
 2.8 arcsec
 14 x 14 pix
 0.2 arcsec

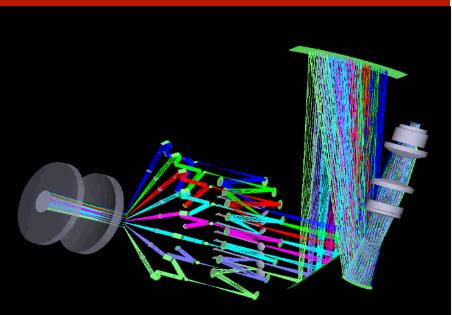
Timeline

•	Kick-off:	04.2004
•	Final Design Review	07.2007
•	Prelim. Acceptance Europe	04.2012
•	1st commissioning	11.2012
•	2 nd commissioning	01.2013
•	3 rd commissioning	03.2013
•	1st science verification	06.2013
•	2 nd science verification	09.2013

Wavelength

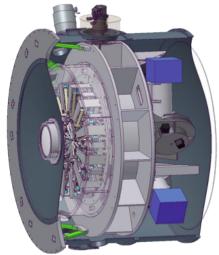
T	otal range	0.78 μm - 2.5 μm
•	H-band:	1.425 - 1.867 µm
•	HK-band:	1.460 - 2.410 µm
•	IZ-band:	0.780 - 1.090 μm
•	K-band:	1.925 - 2.500 µm
•	YJ-band:	1.000 - 1.359 µm

Spectral resolution


•	H-band:	R~4000
•	HK-band:	R~1900
•	IZ-band:	R~2800
•	K-band:	R~4100
•	Y.I-hand [.]	R~3400

Optical throughput

		Hip039102	HIP054804
•	K-band:	22 ± 1.5%	21.7%
•	HK-band:	23 ± 1.4%	23.3%
•	H-band:	23 ± 1.9%	22.9%
•	YJ-band:	16 ± 1.3%	16.9%
•	IZ-band*:	11 ± 1.0 %	9.1%



Inside KMOS

Pick-off arms, filter wheels, IFUs

Light path through the system (for 8 arms)

Pick-off arms, IFUs, spectrographs

Single pick-off arm

Set of mirrors (for 8 arms)

Main Resources

Actual pipeline release

- v1.3.0 released on 07.03.2014
- Problem installing on MacOSX (CPL 6.4?) → kmos-kit-1.2.8.tar.gz

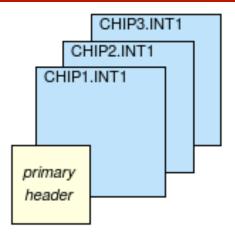
Where to get the newest pipeline releases?

see KMOS Wiki

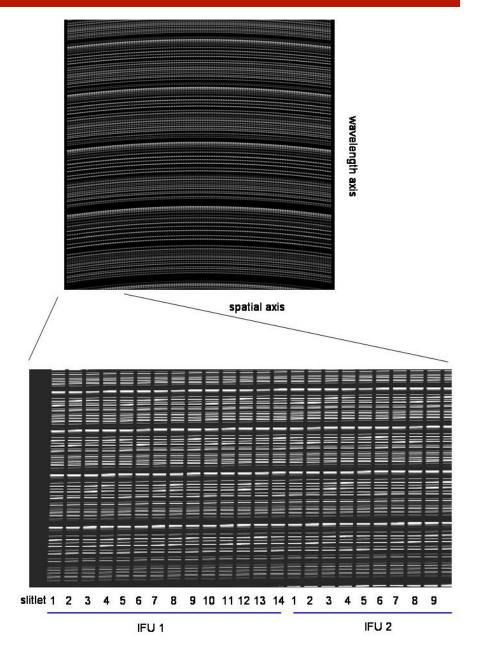
KMOS Wiki

 Resources, manuals, papers, downloads, etc.: wiki.mpe.mpg.de/KMOS-spark

Resources for a quick start:

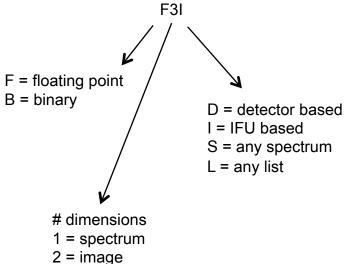

- **SPARKING Guide:** SPARK Instructional Guide for KMOS data (contained in the pipeline release or as well from the KMOS Wiki)
- The Software Package for Astronomical Reductions with KMOS: SPARK [Davies R., Agudo Berbel A., Wiezorrek E., Cirasuolo M., Förster Schreiber N.M., Jung Y., Muschielok B., Ott T., Ramsay S., Schlichter J., Sharples R., Wegner M., 2013, A&A, 558, A56]

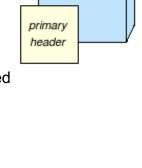
Tutorial test data:


- see KMOS Wiki
 - tutorial working.tar.gz
 - tutorial_data.tar.gz
- products.tar.gz

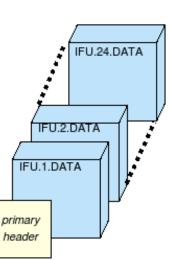
RAW detector frames

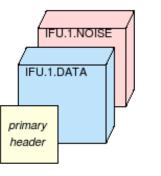
- Primary Header
 - Empty data section
- 3 data extensions
- 8 IFUs per detector
- Each IFU sliced into 14 slitlets,
 14 pix width
- Each slitlet is a dispersed pseudo-longslit, 2040 pix length
- Exposure size: 48 MB
- 4 pix border around each frame reserved for detector readout electronics

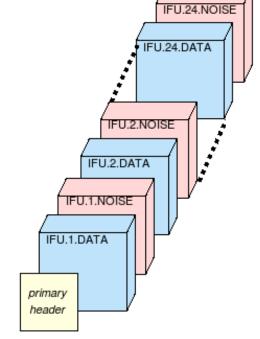




Processed frames


- Spectra, images, cubes are in extensions
- As a rule there are 1, 2, 24, or 48 extensions


Frame Types



IFU.1.DATA

EXTNAME

keyword EXTNAME indicates content type e.g.

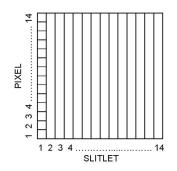
IFU.4.DATA or DET.1.NOISE

3 = cube

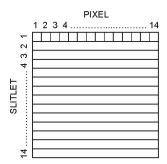
 Every 4 IFUs have a different orientation on the detector

Exposures therefore

miss a certain

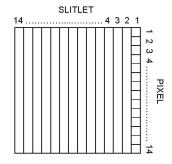

regularity

ON SKY

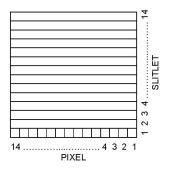


IFUs:

1, 2, 3, 4, 13, 14, 15, 16



IFUs: 17, 18, 19, 20



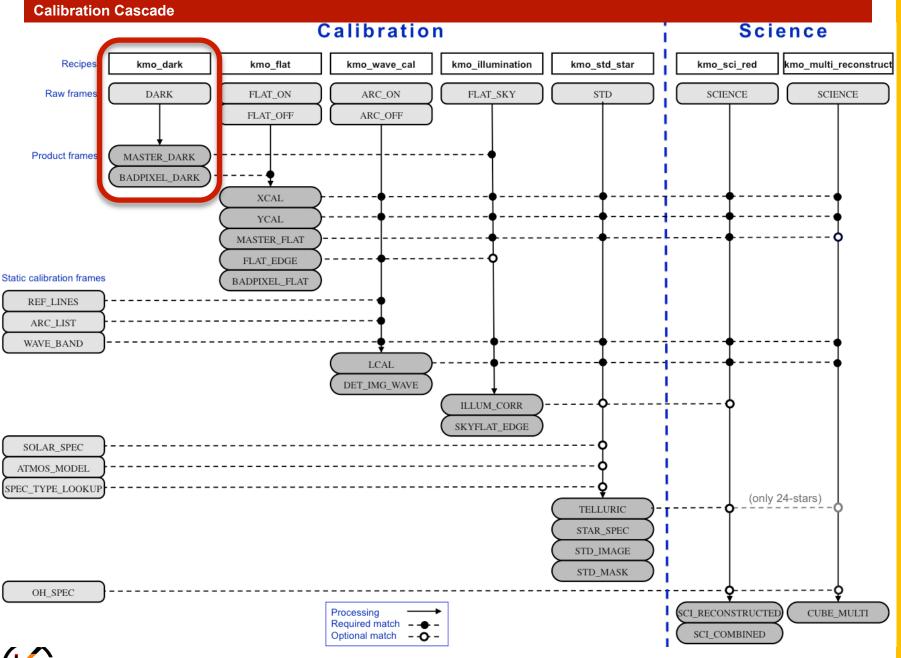
+Z corresponds to North and +Y to East when rotator offset angle is zero

IFUs: 5, 6, 7, 8, 9, 10, 11, 12

IFUs: 21, 22, 23, 24

Calibration Recipes

- kmo_dark
- kmo_flat
- kmo wave cal
- kmo_illumination or kmo_illumination_flat
- kmo std star


Science Recipes

- kmo sci red
- kmo_multi_reconstruct
- kmo_reconstruct
- kmo_combine

Basic tools

- kmo_arithmetic
- kmo_copy
- kmo_extract_spec
- kmo_fit_profile
- kmo_fits_check
- kmo_fits_strip
- kmo_make_image
- kmo_noise_map
- kmo rotate
- kmo shift
- kmo_sky_mask
- kmo_sky_tweak
- kmo_stats

Dark Frames

Recipe: kmo_dark

Purpose:

Combine individual dark frames into a MasterDark frame and create a preliminary bad pixel mask.

Main Parameters:

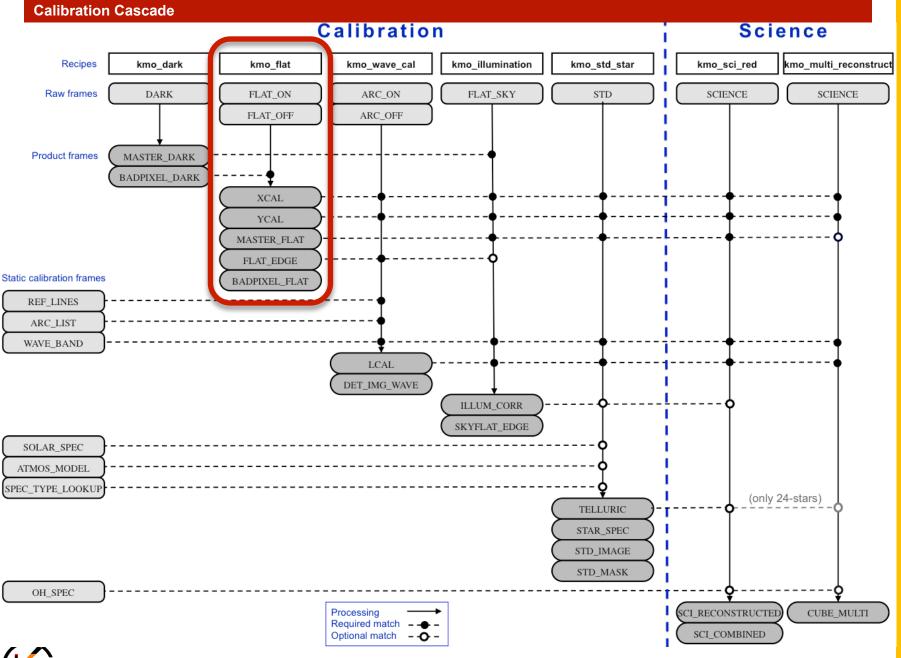
--cmethod="ksigma" (default), "min_max", "median", "average", "sum" * [others for rejection thresholds, number of iterations, etc.]

Example:

esorex	kmo_dark	dark.sof	with dark.sof contain	<u>ıng:</u>
			dark_001.fits	DARK
			dark_002.fits	DARK
			dark 003.fits	DARK

It is recommended to supply at least 3 DARK frames

Output frames:


MASTER_DARK, BADPIXEL_DARK

Getting help on recipes

esorex -man <recipe name>

Flatfield & Spatial Calibration

Recipe: kmo_flat

Purpose:

Combine individual flat frames into a MasterFlat frame, create the XCAL and YCAL spatial calibration frames and create the final bad pixel mask.

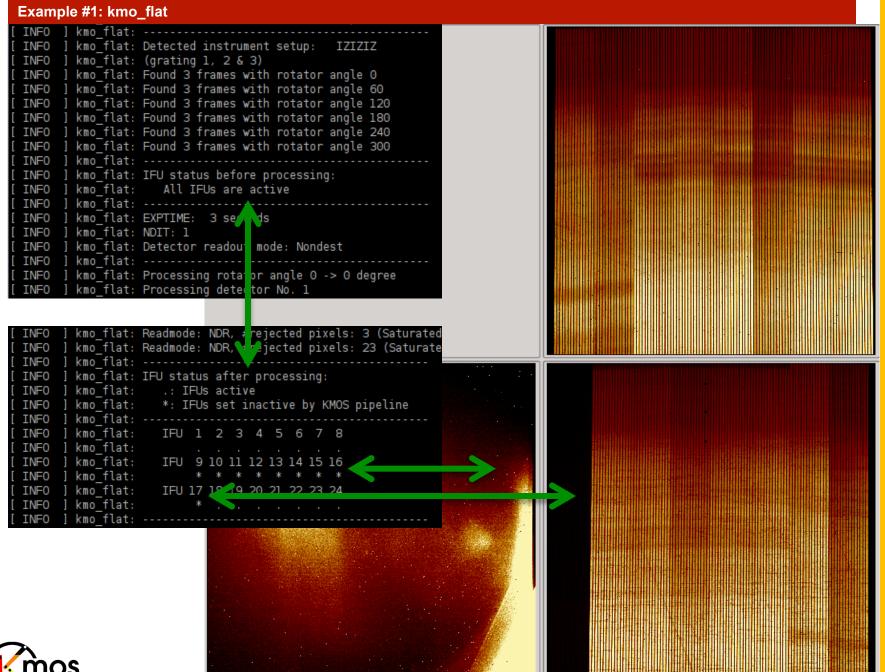
Main Parameters:

--surrounding_pixels

The amount of bad pixels to surround a specific pixel, to let it be marked bad as well.

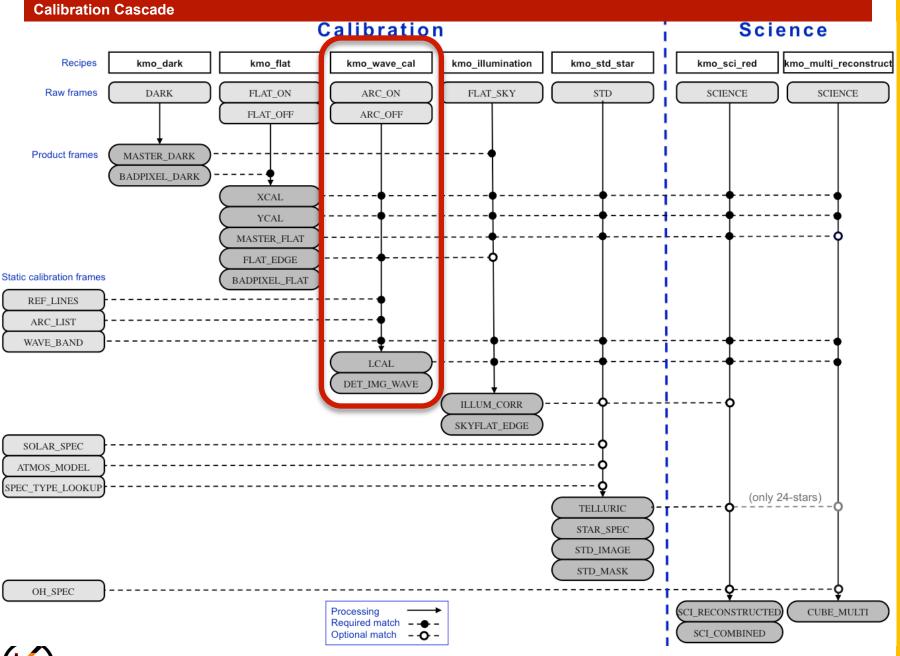
Example:

<pre>esorex kmo_flat flat.sof</pre>	with flat.sof containing:	
	flat_001.fits	FLAT_ON
	flat_002.fits	FLAT_ON
	flat_003.fits	FLAT_ON
	flat_004.fits	FLAT_OFF
	flat_005.fits	FLAT_OFF
	flat_006.fits	FLAT_OFF
	badpixel dark.fits	BADPIXEL DARK


It is recommended to supply at least 3 FLAT_ON and FLAT_OFF frames

Output frames:

MASTER_FLAT, BADPIXEL_FLAT, XCAL, YCAL, FLAT_EDGE


Example #2: kmo_flat INFO | kmo flat: ----kmo flat: Detected instrument setup: HHH INFO] kmo flat: (grating 1, 2 & 3) INFO] kmo flat: Found 3 frames with rotator angle 120 INFO] kmo flat: -----] kmo flat: IFU status before processing: INF0] kmo flat: All IFUs are active INF0] kmo flat: ------INF0 kmo flat: EXPTIME: 7.5 seconds INF0] kmo flat: NDIT: 1 INF0 kmo flat: Detector readout mode: Nondest INF0 INFO] kmo flat: -----kmo flat: Processing rotator angle 0 -> 120 degree INF0 INFO] kmo flat: Processing detector No. 1 INFO] kmo flat: Readmode: NDR, #rejected pixels: 95 (Saturate INFO] kmo flat: Readmode: NDR, #rejected pixels: 4415 (Satura INFO] kmo flat: Readmode: NDR, #rejected pixels: 4482 (Satur INFO] kmo flat: Processing detector No. 2 INF0] kmo_flat: Readmode: NDR, #rejected pixels: 16 (Saturat INFO] kmo_flat: Readmode: NDR, #rejected pixels: 9 (Saturate INFO] kmo flat: Readmode: NDR, #rejected pixels: 24 (Saturate [WARNING] kmo flat: The number of identified slices is one! Appl [WARNING] kmo flat: IFU 16 is valid according to header keywords INFO] kmo flat: Processing detector No. 3 INFO] kmo flat: Readmode: NDR, #rejected pixels: 19 (Saturat INFO] kmo flat: Readmode: NDR, #rejected pixels: 14 (Saturat INFO] kmo flat: Readmode: NDR, #rejected pixels: 39 (Saturat WARNING] kmo flat: IFU 17 is valid according to header keywords INFO] kmo flat: ------INFO] kmo flat: IFU status after processing: INFO] kmo flat: .: IFUs active *: IFUs set inactive by KMOS pipeline INFO] kmo flat: INFO] kmo flat: -----IFU 1 2 3 4 5 6 7 8 INF0] kmo flat: INFO] kmo flat: IFU 9 10 11 12 13 14 15 16 INF0] kmo flat: INF0] kmo flat: kmo flat: IFU 17 18 19 20 21 22 23 24 INF0 kmo flat: INF0

Example #3: kmo_flat INFO] kmo flat: ----kmo flat: Detected instrument setup: HKHKHK INFO] kmo flat: (grating 1, 2 & 3) kmo flat: Found 3 frames with rotator angle 140 INF0 kmo flat: Found 3 frames with rotator angle 180 INF0 INF0] kmo flat: Found 3 frames with rotator angle 220 kmo flat: Found 3 frames with rotator angle 255 INF0 INFO] kmo flat: Found 3 frames with rotator angle 300 kmo_flat: Found 3 frames with rotator angle 340 INF0 INFO] kmo flat: ------] kmo flat: IFU status before processing: INF0 INF0 kmo flat: .: IFUs active INF0] kmo_flat: x: IFUs set inactive by ICS INF0 kmo flat: ------] kmo flat: IFU 1 2 3 4 5 6// INF0 kmo flat: INF0 IFU 9 10 11 1/2 13 1 15 16] kmo flat: INF0 kmo flat: INF0 l kmo flat: IFU 17 18 19 20 21 2 23 24 INF0 kmo flat: INF0 INF0 kmo flat: -----INFO] kmo flat: EXPTIME: 3 seconds kmo flat: NDIT: 1 INF0 INFO] kmo flat: Detector readout mode: Nond st kmo flat: ------INF0 INFO] kmo_flat: Processing rotator angle 0 -> 140 degree INFO] kmo flat: Processing detector No. 1

Wavelength Calibration

Recipe: kmo_wave_cal

Purpose:

Create the LCAL wavelength calibration frame.

Main Parameters:

none

Example:

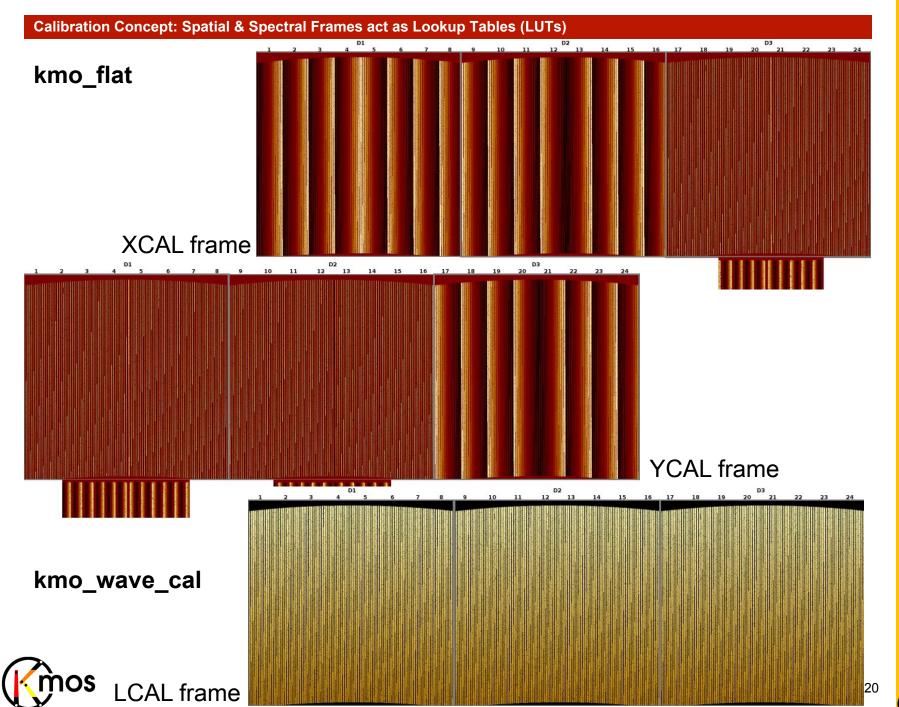
esorex kmo_wave_cal arc.sof with arc.sof containing:

frame_001.fits ARC_ON frame_002.fits ARC_OFF

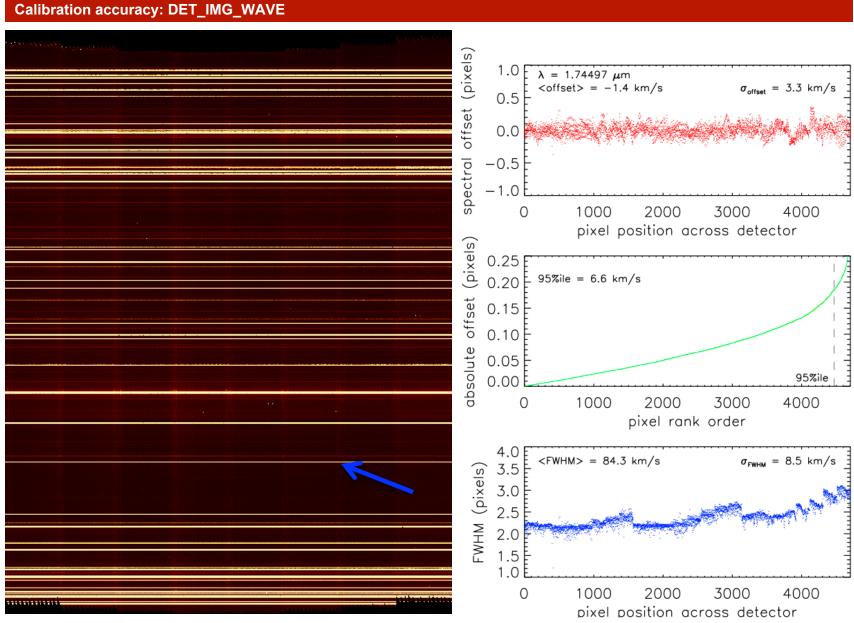
master_flat.fits MASTER_FLAT

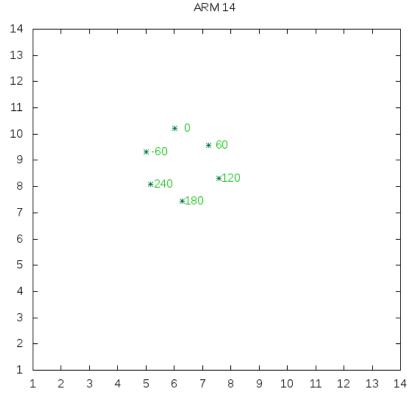
badpixel_flat.fits BADPIXEL_FLAT

xcal.fits XCAL ycal.fits YCAL


flat_edge.fits FLAT_EDGE
kmos_wave_ref_table.fits REF_LINES
kmos wave band.fits WAVE BAND

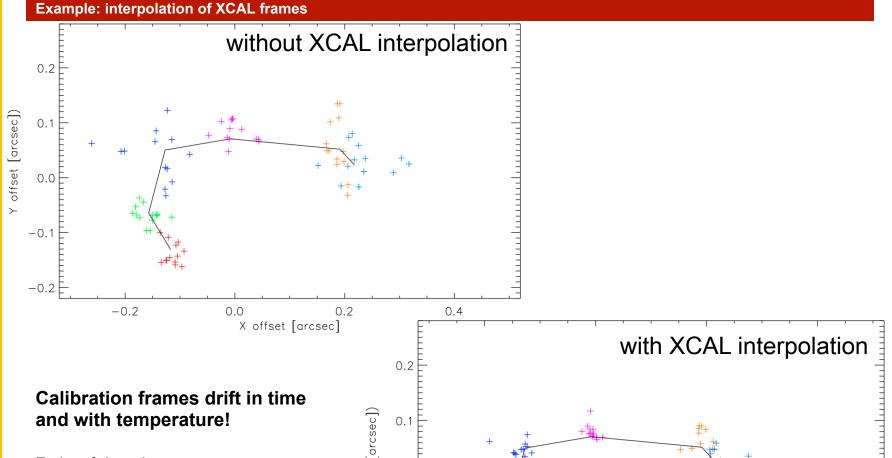
Output frames:


LCAL, DET_IMG_WAVE

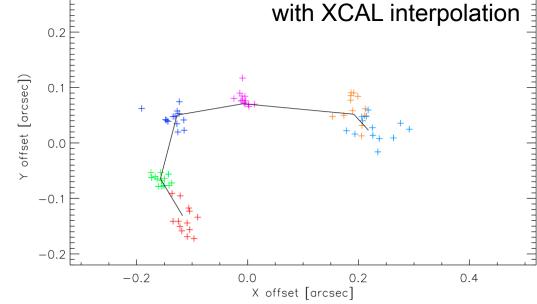


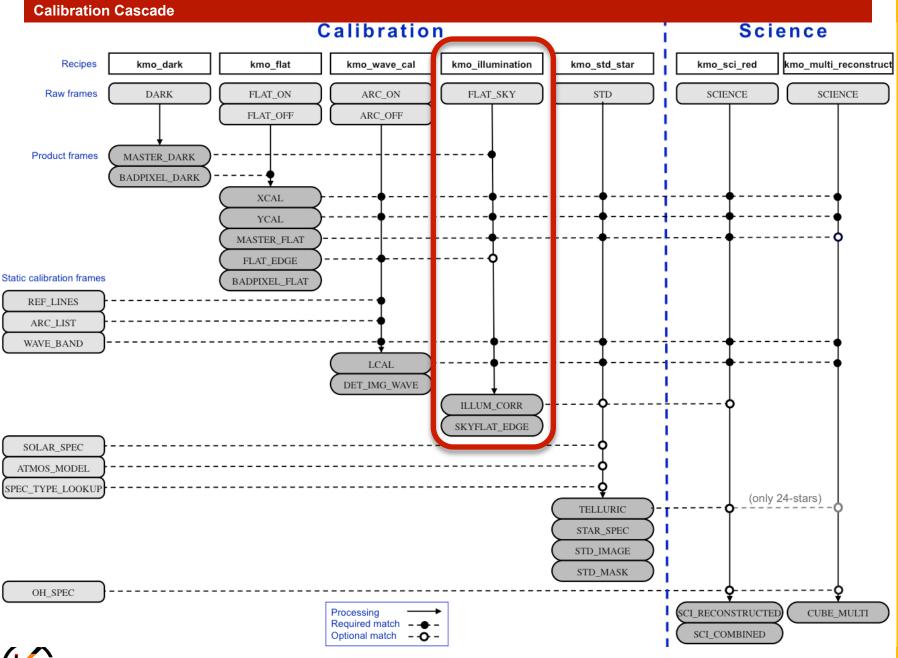
Flexure

- Calibrations are done at 6 rotator angles (0, 60, 120, 180, 240, 300 deg)
- Experiment: Measuring Flexure
 - Place LED in the middle of the IFU
 - 6 exposures at different rotator angles
 - Reconstruct & measure centers


→ Whole instrument sags by a few microns wrt the optical axis

Calibration multitude


- 6 rotator angles @ 5 bands
- → 5 sets of dynamic calibration frames: BADPIXEL_DARK BADPIXEL_FLAT FLAT_EDGE LCAL MASTER_DARK MASTER_FLAT XCAL YCAL
- → Static frames: ARC_LIST ATMOS_MODEL OH_SPEC REF_LINES SOLAR_SPEC SPEC_TYPE_LOOKUP WAVE BAND
- → 8.8 GB calibration data for 55 files



Rule of thumb: More important than stability in time: stability in temperature (check e.g. ESO INS TEMP7 VAL)

Illumination Correction

Recipe: kmo_illumination

Purpose:

Create a calibration frame to correct spatial non-uniformity of flatfield.

Main Parameters:

- --imethod="NN", "lwNN", "swNN", "MS", "CS"
- --flux=TRUE (apply flux conservation)

Example:

esorex kmo_illumination illum.sof with illum.sof containing:

frame 001.fits	FLAT SKY
frame_002.fits	FLAT_SKY
frame_003.fits	FLAT_SKY
master_dark.fits	MASTER_DARK
master_flat.fits	MASTER_FLAT
xcal.fits	XCAL
ycal.fits	YCAL
lcal.fits	LCAL
kmos_wave_band.fits	WAVE_BAND

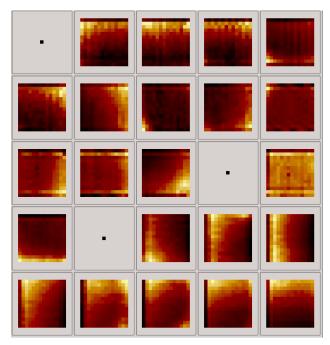
It is recommended to supply at least 3 FLAT_SKY frames

Output frames:

ILLUM_CORR

Sub-optimal rotator angles

Problem


- Strong gradients on IFU edges
- Calibration data at 60, 105, 155, 205, 250, 305 deg
- FLAT_SKY is at 10 deg, closest calib. angle is 60 deg: Δ 50 deg

(noise has been stripped with kmo_fits_strip)

Optimal rotator angles

Solution

- With angles of 0, 60, 120, 180, 240, 300 deg effect is mimimised
- ESO OCS ROT NAANGLE matters when FLAT_EDGE supplied: SKYFLAT_EDGE shifted to match FLAT_EDGE

kmo_illumination vs. kmo_illumination_flat

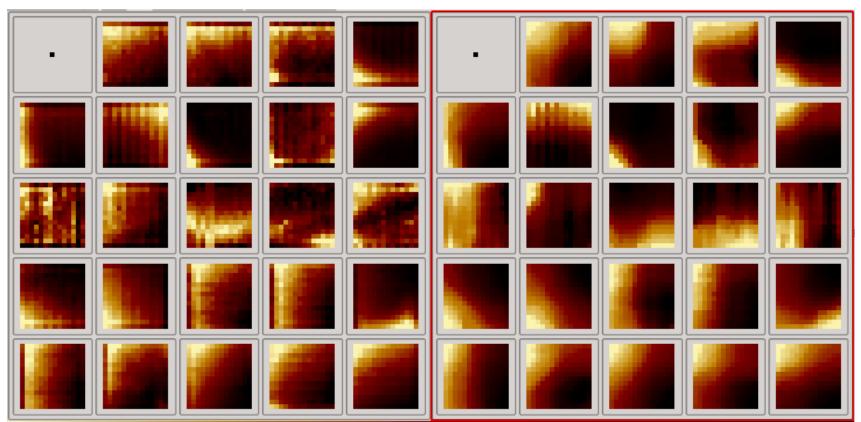
kmo_illumination

several FLAT_SKY frames

Pro:

Real sky exposures

Con:


Edge effects due to flexure (FLAT_SKY and MASTER_FLAT not matching exactly)

kmo_illumination_flat

Using FLAT_ON frames

Pro:

No edge effects

Illumination Correction

Recipe: kmo_illumination_flat

Purpose:

Create a calibration frame to correct spatial non-uniformity of flatfield.

Main Parameters:

- --imethod="NN", "lwNN", "swNN", "MS", "CS"
- --flux=TRUE (apply flux conservation)

Example:

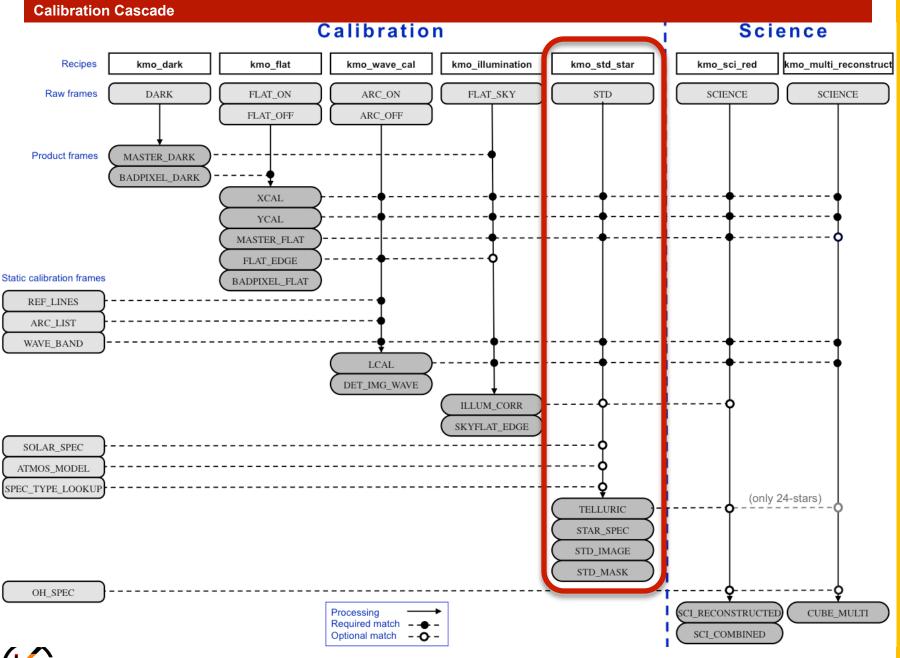
esorex kmo_illumination_flat illum_flat.sof

with illum_flat.sof containing:

flat_001.fits	${ t FLAT_SKY_FLAT}$
flat_002.fits	${ t FLAT_SKY_FLAT}$
flat_003.fits	${ t FLAT_SKY_FLAT}$
7 611	

xcal.fits XCAL ycal.fits YCAL lcal.fits LCAL

kmos_wave_band.fits WAVE_BAND


It is recommended to supply at least 3 FLAT_SKY_FLAT frames

Output frames:

ILLUM_CORR

Telluric Correction

Recipe: kmo_std_star

Purpose:

Create the telluric correction frame

Main Parameters:

- --imethod="NN", "lwNN", "swNN", "MS", "CS"
- --startype="B7III"
- --magnitude=7

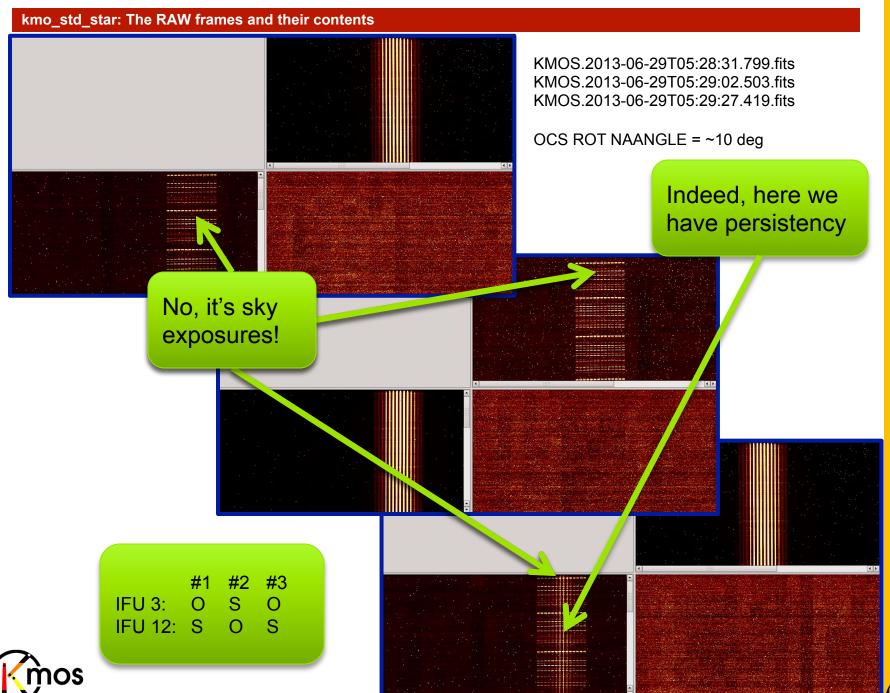
Common IFU-setup of KMOS_spec_cal_stdstar-template

IFUs	#3	#12	#20
Exp #1:	0	S	S
Exp #2:	S	0	S
Exp #3:	S	S	0
Exp #4:	0	S	S

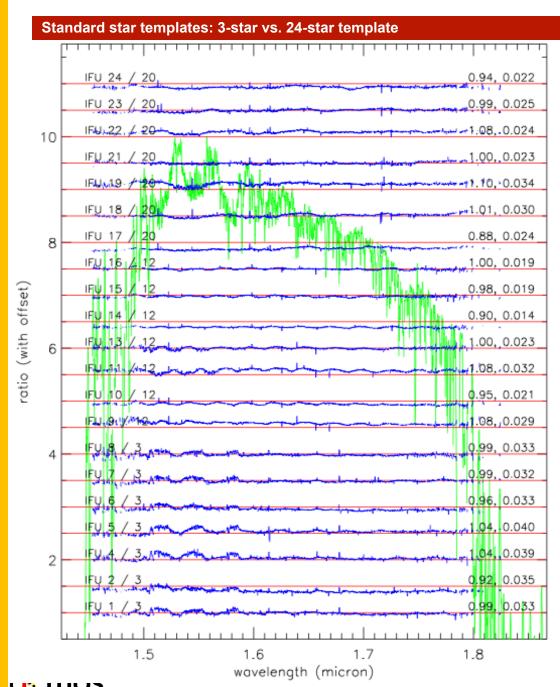
Example:

esorex kmo_std_star std.sof

with std.sof containing:


With otalog outlanding.	
frame_001.fits	STD
frame_002.fits	STD
frame_003.fits	STD
master_flat.fits	MASTER_FLAT
xcal.fits	XCAL
ycal.fits	YCAL
lcal.fits	LCAL
kmos_wave_band.fits	WAVE_BAND
illum_corr.fits	ILLUM_CORR
kmos_solar_h_2400.fits	SOLAR_SPEC
kmos_atmos_h.fits	ATMOS_MODEL
kmos_spec_type.fits	SPEC_TYPE_LOOKUP

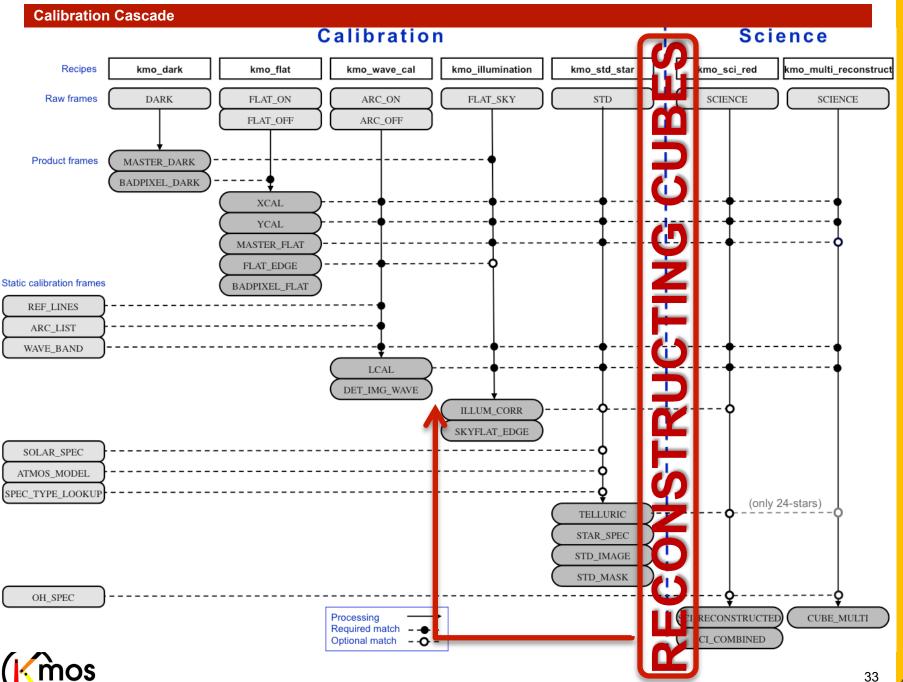
Output frames:


TELLURIC, STD_IMAGE

Comparison of H-band spectra of the same standard star measured just in IFUs 3, 12 and 20, to spectra of the same star measured in the other IFUs

green: H-band spectrum

blue: ratio between 2 IFUs of same detector


red: ratio of 1 for reference

Numbers on the right: mean and stddev

Just using 3 arms to calibrate all IFUs sufficient at the level of precision of few percent

- → gain in time during calibration
- → It is important to have a standard star in every detector!
- → When rotator optimization intervenes, the IFUs can be reallocated (this is the case when the keyword ESO OCS OFFSET is present → check for ESO OCS ARMx ORIGNAME)

Cube Reconstruction

Recipe: kmo_reconstruct

Purpose:

Reconstruct the 24 cubes of a single exposure.

Note that **no separate bad pixel mask is required** because it is already encoded in the calibration frames.

Main Parameters:

- --imethod="NN", "lwNN", "swNN", "MS", "CS"
- --flux=TRUE (apply flux conservation)

Example:

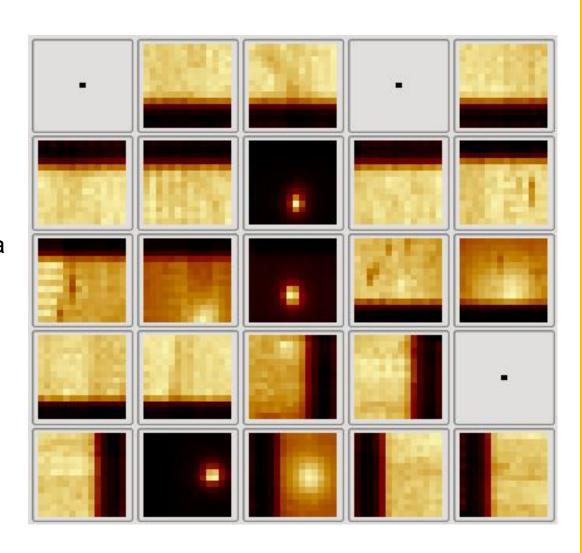
esorex kmo_reconstruct reconstruct.sof with reconstruct.sof containing:

frame_001.fits OBJECT
xcal.fits XCAL
ycal.fits YCAL
lcal.fits LCAL
kmos wave band.fits WAVE BAND

Instead of OBJECT as well DARK, FLAT_ON, ARC_ON, STD or SCIENCE can be provided

Output frames:

CUBE_DARK, CUBE_FLAT, CUBE_ARC, CUBE_OBJECT, CUBE_STD or CUBE_SCIENCEDET_IMG_WAVE (optional)

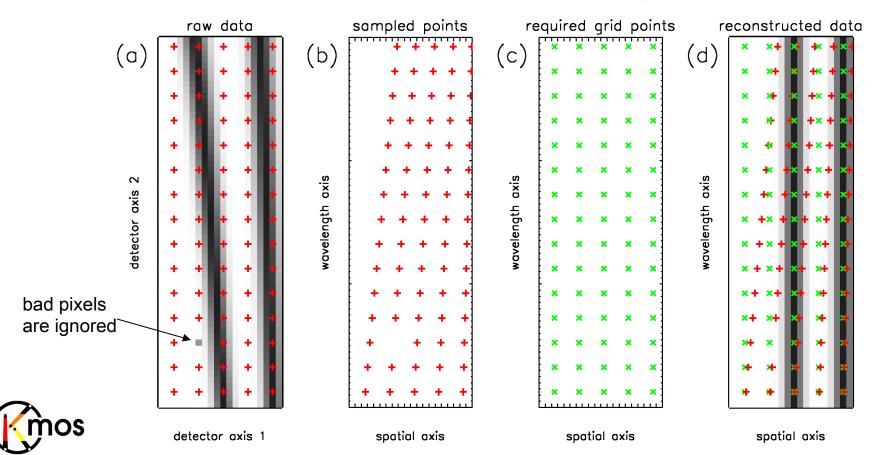

Issue:

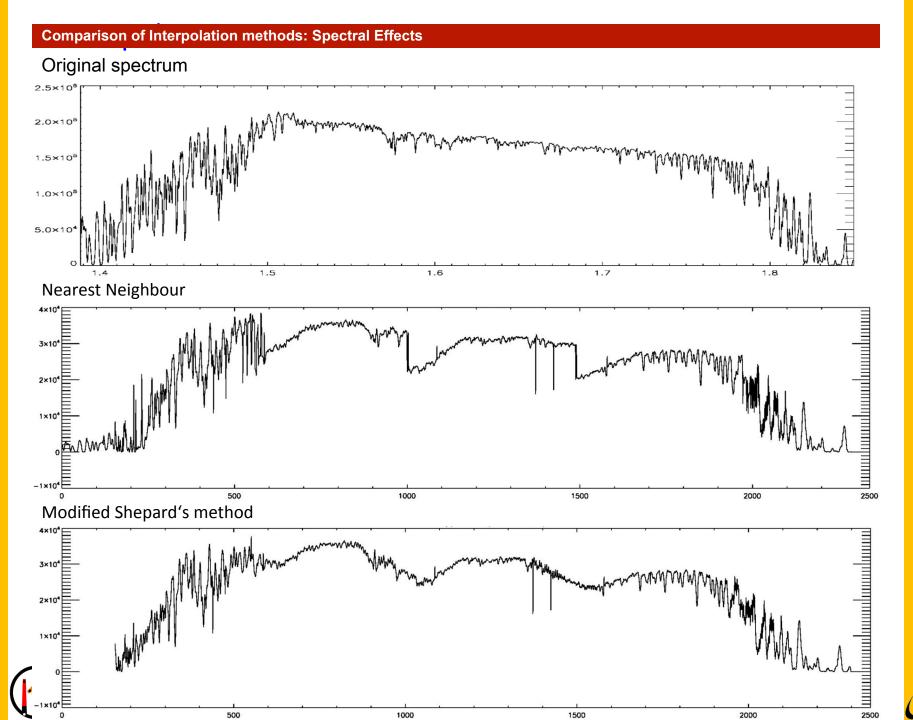
Big stripes at IFU borders

- Reconstruction has been executed
- But calibrations don't match the data frames
- e.g. gratings slightly in a different position

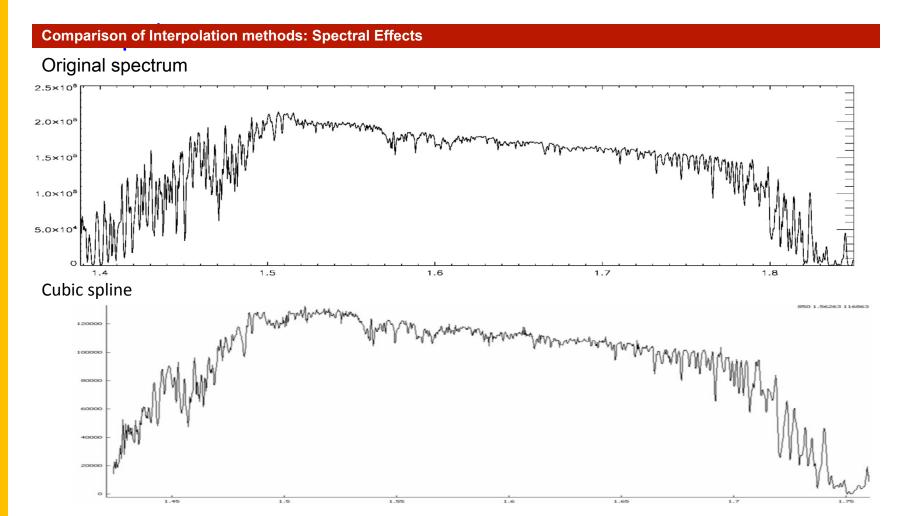
Solution:

Take new calibration frames

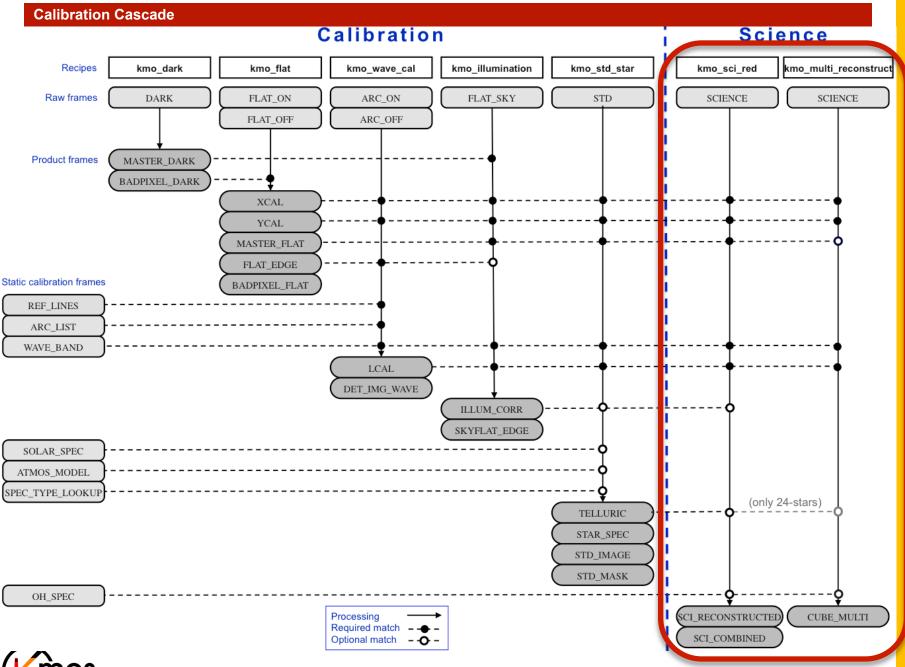

Final frame
Calibration frames
Detector frame


- regularly gridded x,y,λ positions where we want to know data values
- LUTs for irregularly spaced x,y,λ of each pixel on detector
- data values for these *irregularly* spaced x,y,λ sampling positions

Create a list of sample points so that the data is dissociated totally from the detector frame. i.e. the observations & calibrations simply give you: value₀, x_0 , y_0 , λ_0


walue_n, x_n , y_n , λ_n

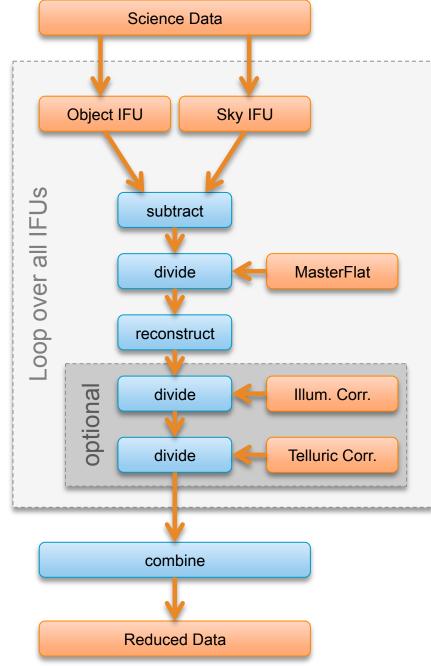
Each point in final frame is interpolated from sampled points in its local neighbourhood



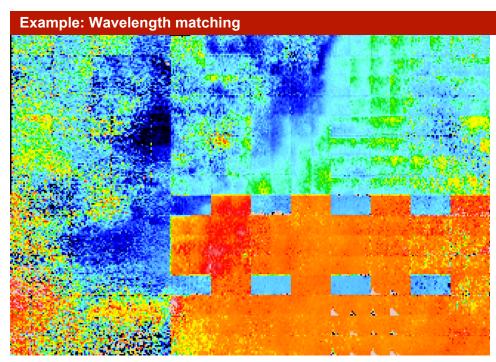
Ripples introduced during reconstruction With CS being less severe than with NN-methods

Can be avoided with better sampling, which provides the kmo_multi_reconstruct recipe

Simple two-step Reconstruction & Combination

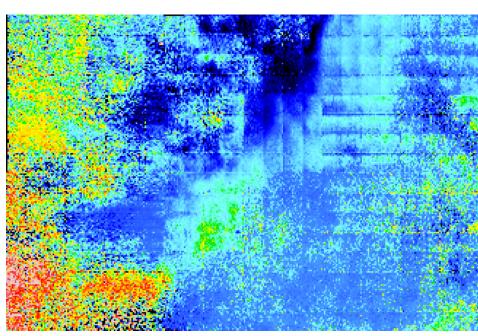

- kmo_sci_red
 - kmo_reconstruct
 - · Reconstruct every single IFU separately
 - For every IFU: sky-detection and –subtraction
 - Telluric and illumination correction
 - · kmo_combine
 - All cubes combined together
- → Poor: Data is interpolated twice

Advanced Reconstruction & Combination

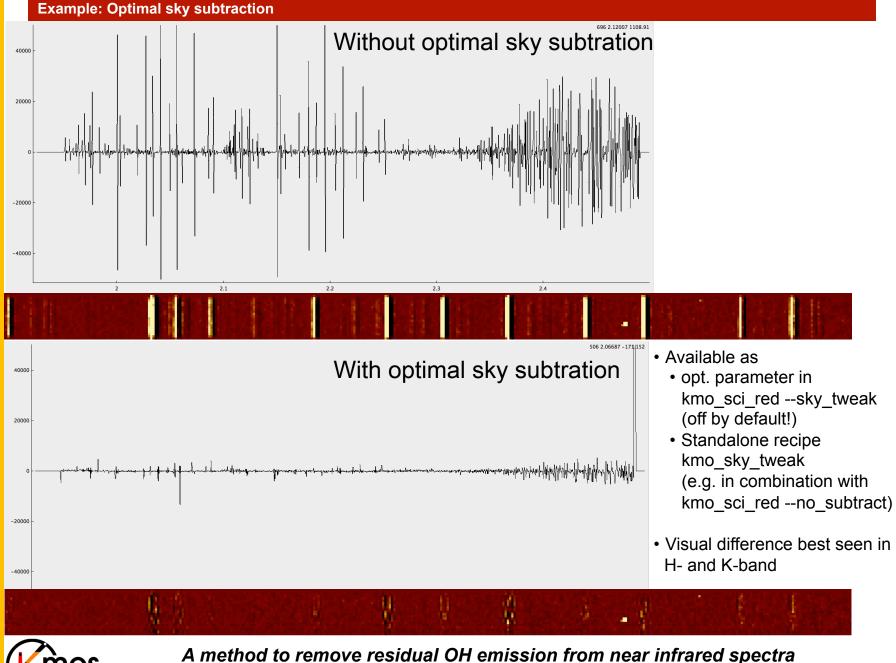

- kmo_multi_reconstruct
 - Calculate shifts (evtl. reconstruct IFUs separately)
 - create Super-LUT
 - Reconstruct all data in one step
- → **Pretty:** Data is interpolated once!

→ BUT:

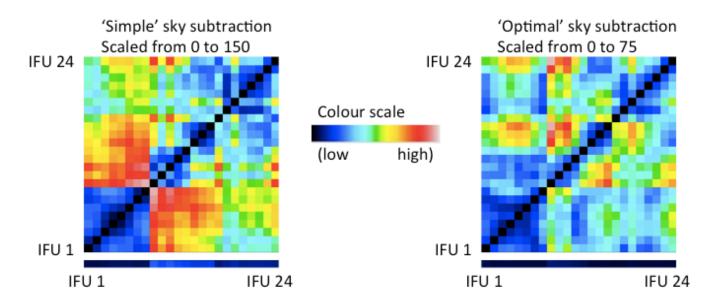
- · Advanced recipe for expert users
- Doesn't provide all features kmo_sci_red does!
 e.g. ILLUM_CORR would have to be mapped back to RAW image space and is therefore not supported
- TELLURIC only supported with 24-star template



before


after

→ kmo_sci_red with OH_SPEC frame provided



An illustration of the quality of sky subtraction, on the left for the "simple" sky subtraction method, and on the right using the "optimal" sky subtraction method following the algorithm presented in Davies et al. (2007). The matrix shows arm-to-arm subtraction in the same exposure, e.g. the sky residual in IFU j using IFU k to do sky subtraction in the same exposure. For comparison, the vector at the bottom shows the sky residual when the sky is subtracted from the same IFU, but from the subsequent exposure, e.g. IFU j – IFU j in the classical A-B sequence.

Example: Detector Read-out Effects

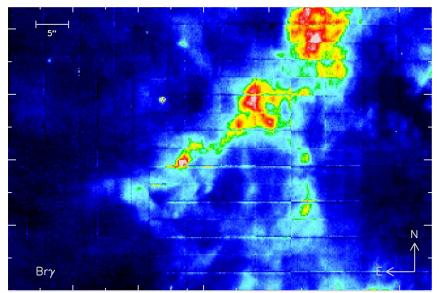
Recipes: kmo_reconstruct, kmo_sci_red, kmo_multi_reconstruct

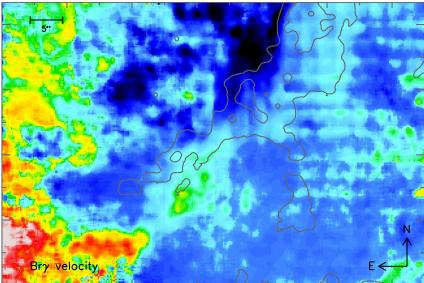
Issue:

Do your reconstructed data have stripes like those?

- Due to temporally variable levels in the read-out channels of the detectors
- The effect is only ~1 count but is an issue when observing very faint sources.

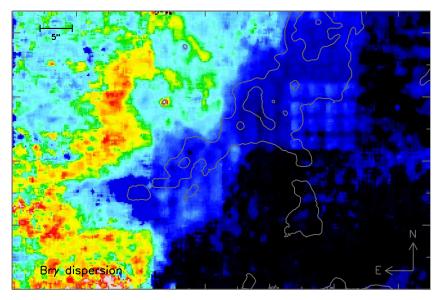
Solution:


Perhaps ESO can determine a better setting for the detector readout mode


Workaround:

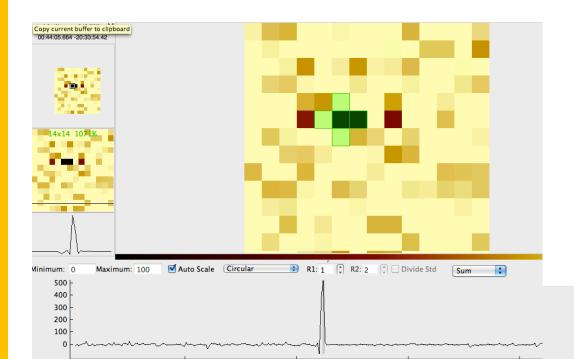
Download and apply experimental IDL-toolchain dark_channel_correction.tar.gz
 from KMOS Wiki

Example: Flux and background correction on mosaic of R136



Flux (top), velocity (top right) and dispersion (right) of the Brγ line extracted from the R136 mosaic.

The velocity is shown in the range 230–310 km/s and the dispersion in the range 0–70 km/s


The 2 contours outline the location of the most prominent Brγ line emission for reference

Flux and background calibration have been used for these images to reduce edge effects.
Can only be used for mosaics with small objects

Cosmic hits

1.05

Get IDL script from KMOS Wiki: L.A. Cosmic

1.07

The DO implemented in ESO software can't handle KMOS specific object/sky exposures objects and skies intermixed in one frame

Input frames

IFU #	1 2	3	4 5	6	7 8	Timestamp in "DATE-OBS" keyword
Frame 1	OS	S	s s	S		2011-01-13T01:00:00.0000
Frame 2	s o					
Frame 3	S S					10
Frame 4	S S	S	SO	S S	s o	04
Frame 5	o s	S	o s	S	s O	05

Output frames

Frame	1	X	•	•	•	•	•	X	•
Frame	2	•	X	•	•	•	•	•	•
Frame	3	•	•	•	X	•	X	•	•
Frame	4	•	•	•	•	X	•	•	•
<u>Frame</u>	5	X	•	•	X	•	•	•	•
IFU #		1	2	3	4	5	6	7	8
		X	X		X	X	X	X	

- Association table written to disk obj_sky_table.txt
- · Possibility to edit
- Read-in again

Data Handling

Problem:

Lots of exposures with different bands and rotator angles originating from different templates. How to find quickly the needed exposures?

Solutions:

- Either make use of dfits and fitsort
- or use the easySPARK-scripts
- or use Reflex from ESO → workflow GUI

easySPARK-scripts

- easySPARK_calibration.sh
 - easySPARK dark.sh
 - · easySPARK flat.sh
 - easySPARK_wave_cal.sh
- easySPARK_illumination.sh
- easySPARK_illumination_flat.sh
- easySPARK_std_star.sh
- easySPARK reconstruct.sh
- easySPARK_sci_red.sh
- easySPARK_multi_reconstruct.sh

Environment variable KMOS_CALIB has to be defined

kmo_sci_red: noise / no noise

Problem

 sci_combined-products from kmo_sci_red sometimes with valid noise extension and sometimes with empty noise extension

Solution

- Products of size 14x14pix indicate, that just one object frame was to be combined
 - except for --method="none"
 - → sci combined xxx == sci reconstructed xx
- Default --imethod=CS doesn't generate noise extension, but empty noise extension generated (with --imethod=NN/lwNN/swNN noise is calculated
- Use kmo_fits_strip --noise to remove unwanted noise extensions

kmo_sci_red: combining different angles

Problem

[ERROR] kmo_sci_red: Illegal input: Orientation of cube 1 (7.01671e-15deg) and cube 2 (90deg) differ! Align the orientation of this cube with kmo_rotate before applying this recipe.

Solution

- Combining cubes from different OBs, with different rotator offsets
 Odeg and 90deg have to be derotated with kmo_rotate
- Look at
 - HIERARCH ESO OCS ROT OFFANGLE in RAW frames or
 - CD1_2 and CD2_1 in products, if these are zero → 0deg

Overriding unused IFUs

Problem

- IFU has been wrongly defined as NOTUSED (data well visible on RAW frames)
- How to override ESO OCS ARMx NOTUSED keyword?

Solution

- Pipeline doesn't allow any overrides on this
- User can use a text editor or the program 'fv' to erase this keyword
 - In this case an appropriate ESO OCS
 ARMx TYPE = S or O or R (sky, object, reference) has to be defined

Long exposure time

Problem

 EXPTIME is 20 sec, but the time between exposures is about 1 min 30 sec?

Solution

- Reconstruction on RTD takes ~30 sec
- NDIT was 3
 → 3x 20 sec + 30 sec = 1 min 30 sec

Note

Normally only the 1st exposure of an OB is reconstructed, but there is a button in the KMOS Control Panel to switch reconstruction on/off during the OB

Defined wavelength ranges (WAVE_BAND)

H-band: 1.425 - 1.867 μm
 HK-band: 1.460 - 2.410 μm
 IZ-band: 0.780 - 1.090 μm
 K-band: 1.925 - 2.500 μm
 YJ-band: 1.000 - 1.359 μm

ATMOS_MODEL

H-band: 1.400 - 1.900 μm
 HK-band: 1.450 - 2.430 μm
 IZ-band: 0.800 - 1.200 μm
 K-band: 1.900 - 2.549 μm
 YJ-band: 0.925 - 1.379 μm

SOLAR_SPEC

H-band: 1.403 - 1.802 μm
 HK-band: 1.403 - 2.501 μm
 IZ-band: - 1.932 - 2.501 μm

YJ-band: –

Best practices

- Please choose equidistant rotator angles unless you know what you are doing
 - When observations have a nasmyth angle from 10 to 20deg (ESO PRO NAANGLE keyword), it is valid to take calibrations at e.g. 5, 10, 15, 20, 25deg
 - But then these calibrations are only suited for these specific SCIENCE frames!
- Check if there is a standard star in every detector!
- Assure that you always have a sky exposure in every IFU!
- Consider strongly to provide OH_SPEC frame for wavelength matching!
- Use sky_tweak wherever possible (as parameter in kmo_sci_red or standalone with kmo_sky_tweak)!
- Consider using parameter --edge_nan in kmo_sci_red when dithering. Dark edges will be cut off.
- When experienceing offsets in pointing, respect following sources:
 - LUTs for arm positioning on instrument workstation could be outdated
 - → nothing you can do afterwards
 - Calibration frames differing too much in time from science exposures
 - → check for newer calibration frames (normally done during daytime after observation)
 - Calibration frames differing too much in temperature from science exposures
 - → check for better matching calibration frames
- And still ther can be shifts up to 1pix...

