

KMOS Pipeline Tutorial

Alex Agudo Berbel, Ric Davies, Natascha Förster-Schreiber, Erich Wiezorrek

26.10.2012

What is KMOS?

Some Pictures

Specifications

Pipeline

Data Format Flexure Calibration Reconstructing Data Cubes Combining Data Cubes

Observation Workflow at VLT

Observation Modes

Software

Data Viewers

Karma

Esorex

Pipeline GUI

Recipes

Calibration

Overview

- **KMOS: K**-band **M**ultiple-**O**bject cryogenic integral field **S**pectrograph designed for intermediate resolution spectroscopy in the 0.8-2.5µm range
- First of its kind at a 8m class telescope
 - Similar project: SINFONI (single IFU)
- 24 robotic pickoff arms patrol a 7.2 arcmin diameter field each of which feeds 2.8x2.8 arcsec FoV sampled at 0.2 arcsec to an image slicing IFU
- The IFUs are consolidated in groups of 8 which feed one of 3 identical spectrographs providing R~3500 spectra in the H, HK, IZ, K & YJ bands

Outside KMOS

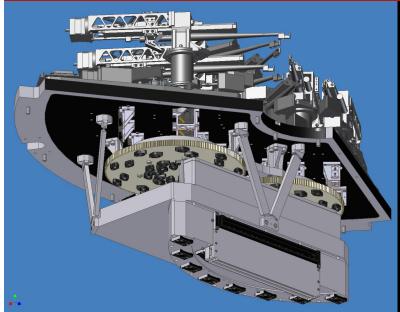
The front: cryostat, mounting plate & window

The back: cable derotator & electronic cabinets

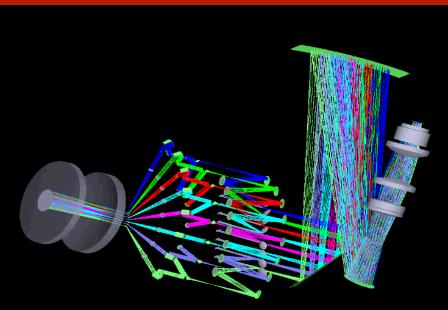
One of the Nasmyth focuses

Inside KMOS

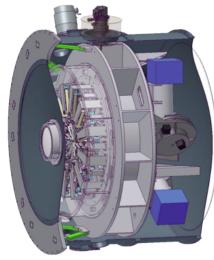
Kmos

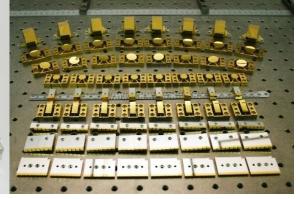

Inside the cryostat: the 24 robotic arms

5


MPE

KMOS: SOME PICTURES


Inside KMOS



Pick-off arms, filter wheels, IFUs

Light path through the system (for 8 arms)

Pick-off arms, IFUs, spectrographs

nos

Single pick-off arm

Set of mirrors (for 8 arms)

Key SpecificationsWavelengthGeneralTotal range0.78 µm• Rotating Mass2.4 t• H-band:1.425 -• Total Mass9.5 t• HK-band:1.460 -

- Operating temperature -140 °C
- Optical Throughput ~30%

Hardware

- 24 robotic pick-off arms
 - · arranged in 2 layers
 - · divided into 3 sections
- 3 spectrographs
- 3 Hawaii-2RG detectors 2048 x 2048 pix

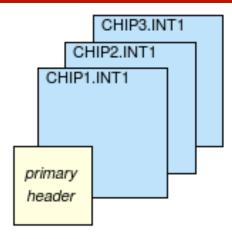
Field of View, Resolution

- Telescope Patrol Field
 IFU
 FoV
 Size
 14 x 14 pix
 - Pixel size
 0.2 arcsec

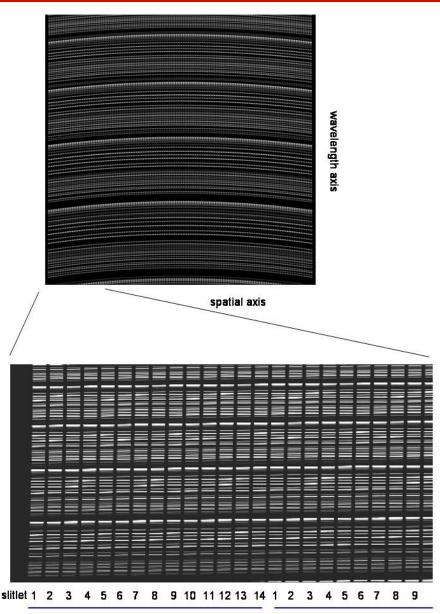
Timeline

- Kick-off: 04.2004
- Final Design Review 07.2007
- Prelim. Acceptance Europe 04.2012
- 1st commissioning 11.2012

Total range	0.78 µm - 2.5 µm		
H-band:	1.425 - 1.867 µm		
 HK-band: 	1.460 - 2.410 µm		
 IZ-band: 	0.780 - 1.090 µm		
K-band:	1.925 - 2.500 µm		
YJ-band:	1.000 - 1.359 µm		

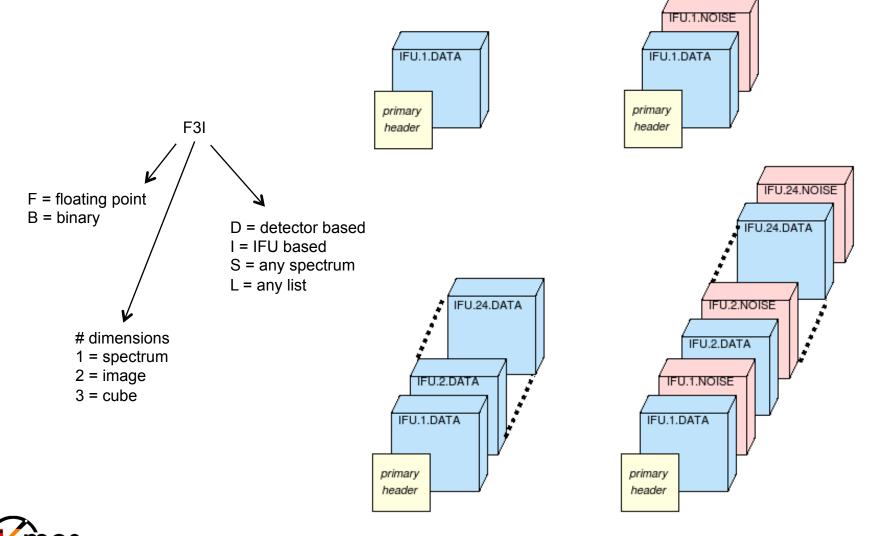

Spectral resolution

- H-band: R~4000
- HK-band: R~1900
- IZ-band: R~2800
- K-band: R~4100
- YJ-band: R~3400

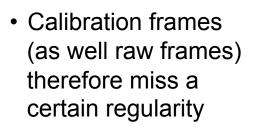

Optical throughput

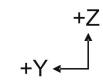
- H-band: ?
- HK-band: ?
- IZ-band: ?
- K-band: ?
- YJ-band: ? (to be measured on sky)

- Primary Header
 - Empty data section
- 3 data extensions
- 8 IFUs per detector
- Each IFU sliced into 14 slitlets, 14 pix width
- Each slitlet is a dispersed pseudo-longslit, 2040 pix length
- Exposure size: 48 MB
- 4 pix border around each frame reserved for detector readout electronics

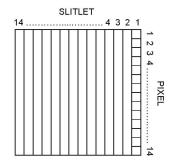


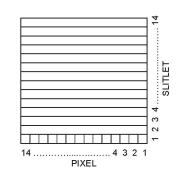
IFU 1


Processed frames

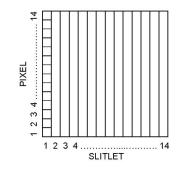

- Spectra, images, cubes are in extensions
- As a rule there are 1, 2, 24, or 48 extensions
- keyword EXTNAME indicates content type

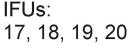
IFU orientation

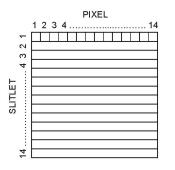

• Every 4 IFUs have a different orientation on the detector



+Z corresponds to North and +Y to East when rotator offset angle is zero

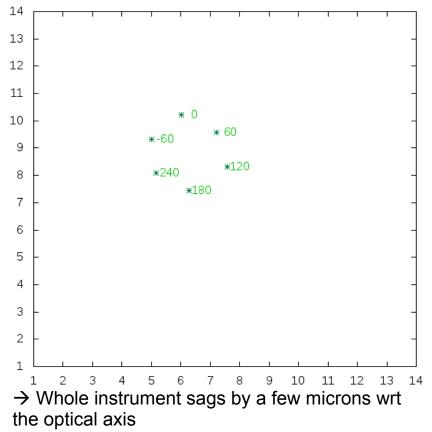



IFUs: 21, 22, 23, 24


PIPELINE: DATA FORMAT

1, 2, 3, 4, 13, 14, 15, 16

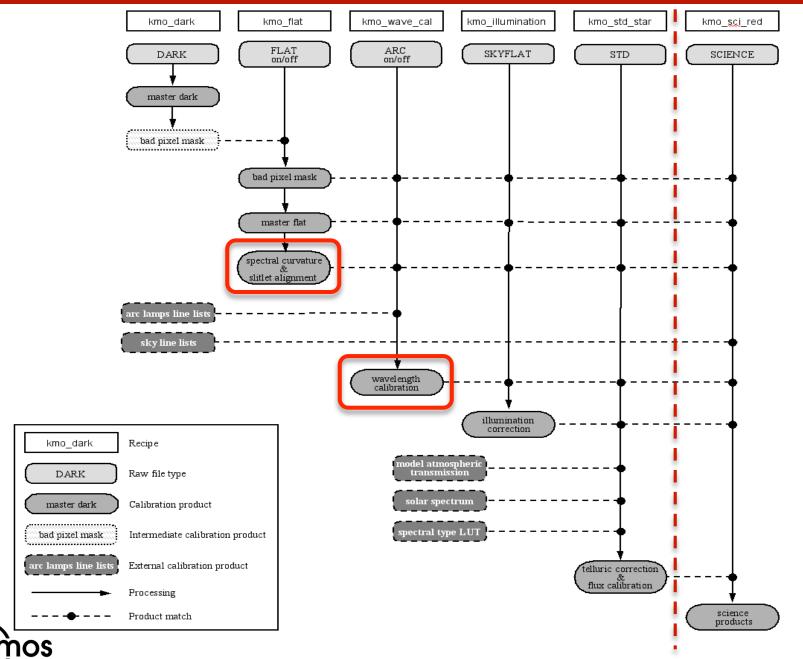
IFUs:

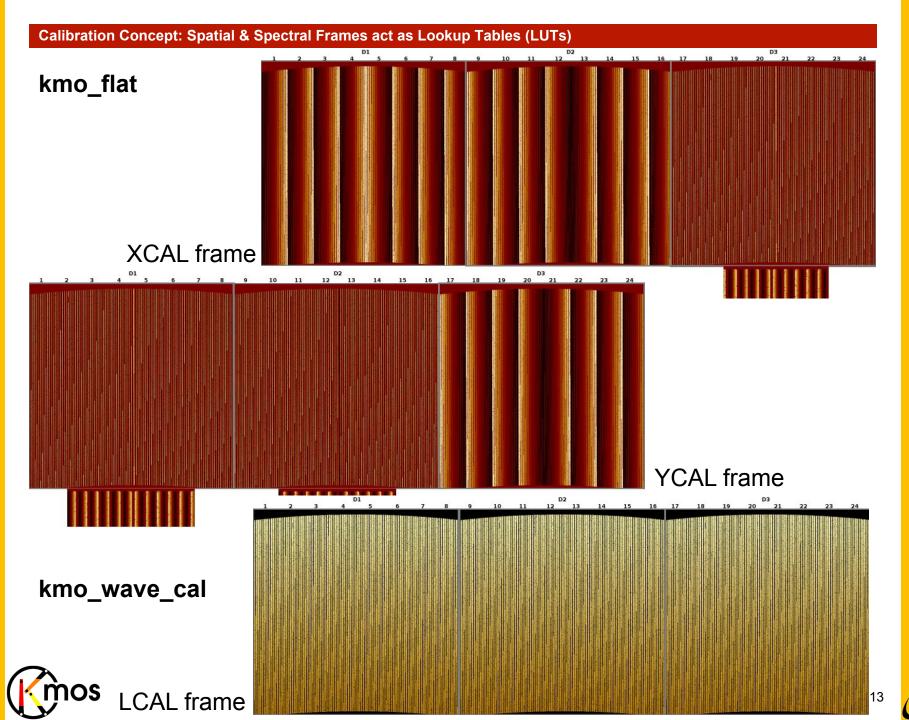

Flexure

Calibration multitude

•

6 rotator angles @ 5 bands \rightarrow 30 sets of calibration frames \rightarrow 8.8 GB calibration data for 200 files


- Calibrations are done at 6 rotator angles ٠ (0, 60, 120, 180, 240, 300 deg)
- Measuring Flexure:
 - Place LED in the middle of the IFU
 - 6 exposures at different rotator angles
 - Reconstruct & measure centers ARM 14

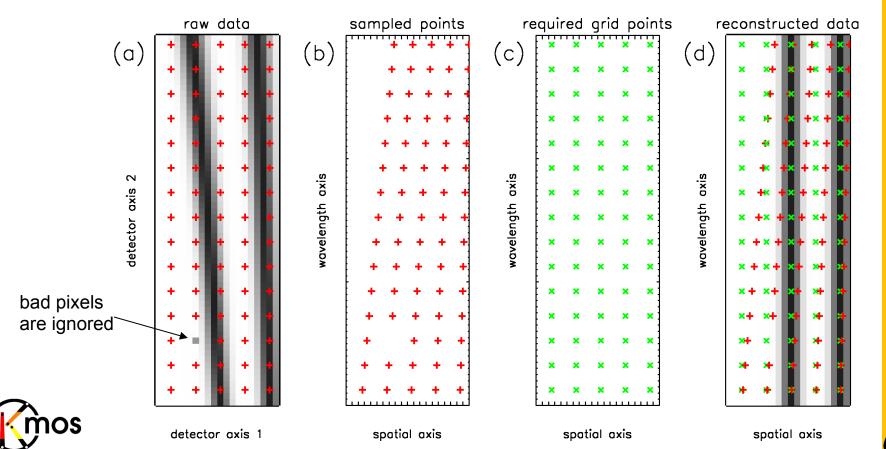

- Calibration recipes ignoring bands and rotator angles:
 - kmo dark
 - kmo illumination

Calibration Cascade

12

PIPELINE: CALIBRATION

MP

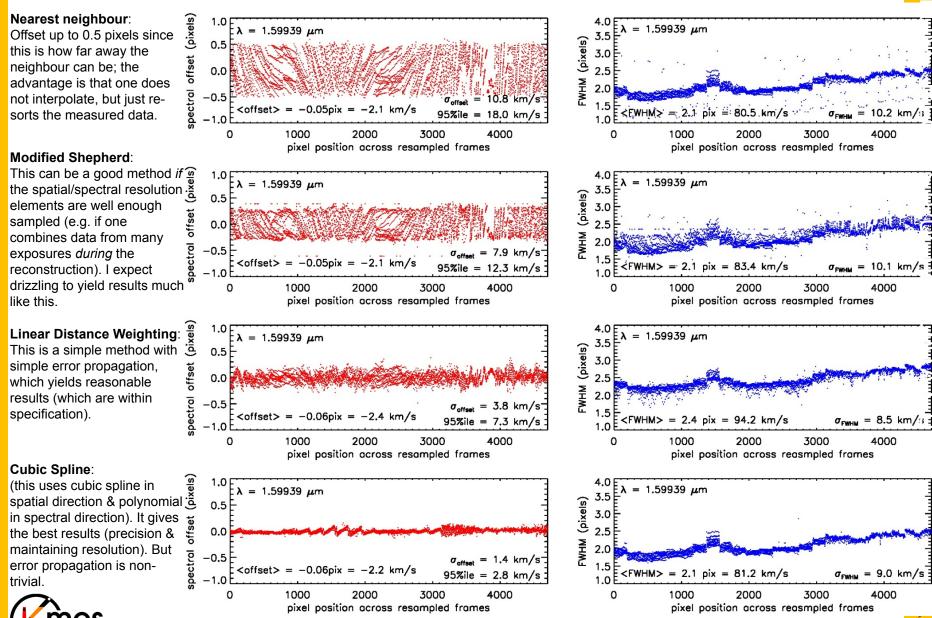

Interpolation

Final frame - regularly gridded x,y, λ positions where we want to know data values Calibration frames - LUTs for *irregularly* spaced x,y, λ of each pixel on detector

Detector frame - data values for these *irregularly* spaced x,y, λ sampling positions

Create a list of sample points so that the data is dissociated totally from the detector frame. i.e. the observations & calibrations simply give you: value₀, x_0 , y_0 , λ_0

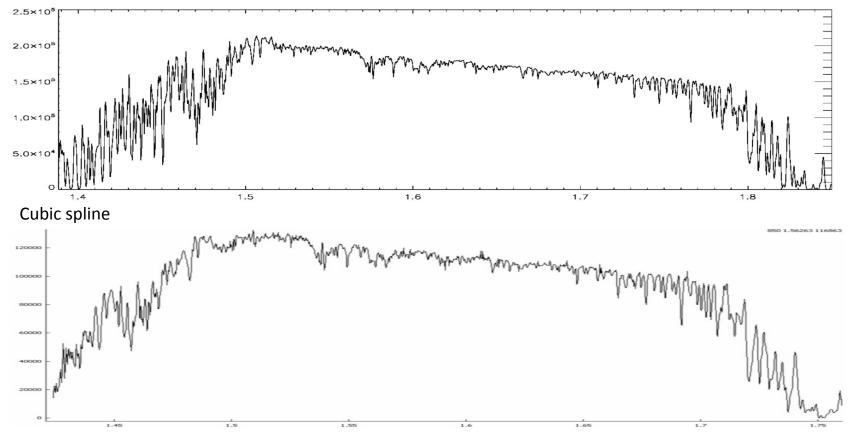
Each point in final frame is interpolated from sampled points in its local neighbourhood



 $value_n, x_n, y_n, \lambda_n$

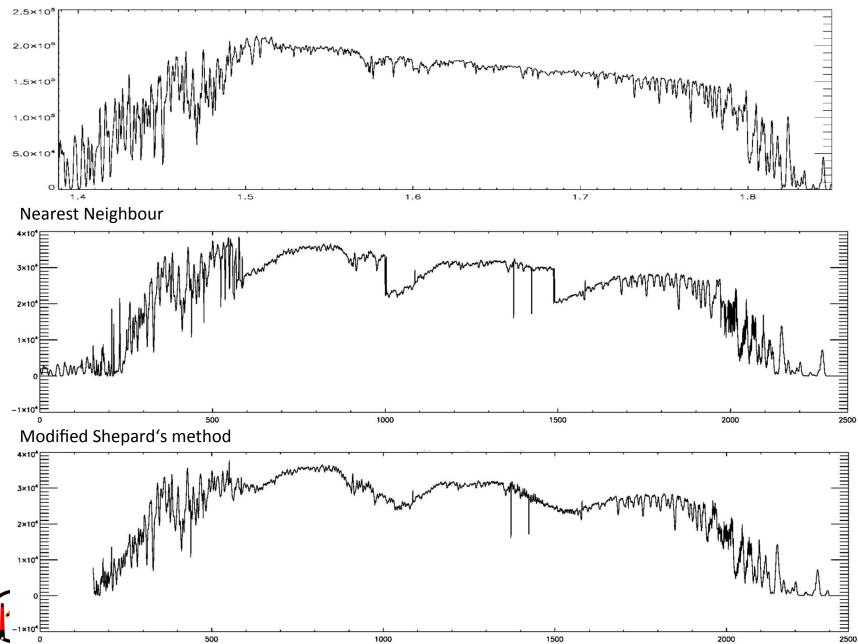
Comparison of Interpolation methods

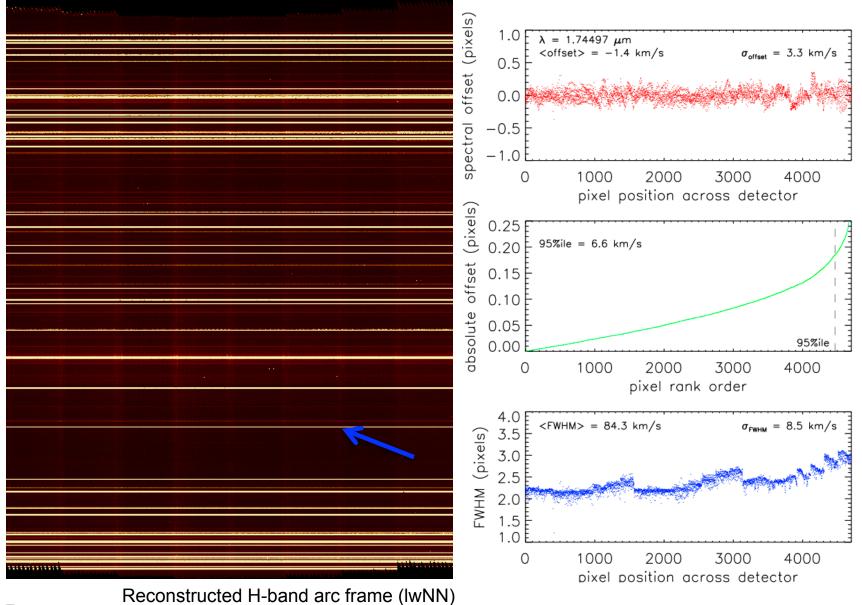
The first three are true 3D methods, and are all based on weighted sums of the surrounding pixels. The fourth method is the only one that uses real interpolation, and is a sequence of 1D interpolations.


H-band (for a line @1.599µm, pixel ~820)

MP

Comparison of Interpolation methods: Spectral Effects


Original spectrum



Comparison of Interpolation methods: Spectral Effects

Original spectrum

Calibration accuracy

PIPELINE: CALIBRATION

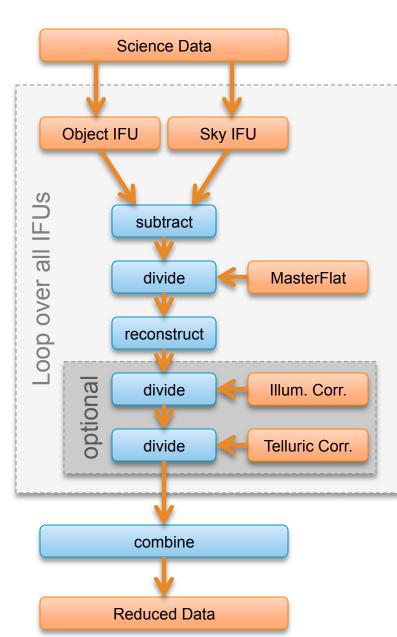
19

Simple two-step Reconstruction & Combination

Simple Science Reduction

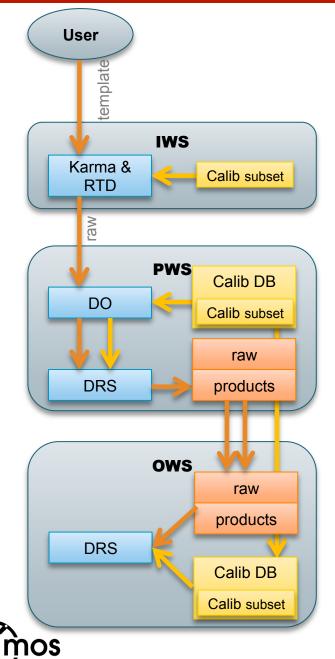
- kmo_reconstruct
 - Reconstruct every single IFU separately
- kmo_combine
 - All cubes combined together
- → <u>Problem</u>: Data is interpolated twice

Advanced Simultaneous Reconstruction & Combination

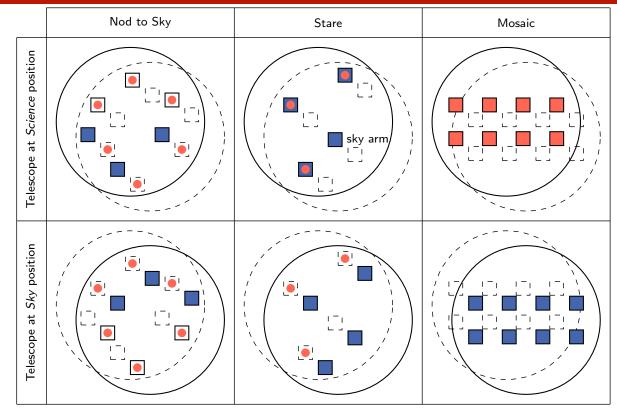

- kmo_multi_reconstruct
 - · Reconstruct every single IFU separately
 - Calculate shifts, create Super-LUT
 - Reconstruct all data in one step
 - For every IFU: sky-detection and -subtraction
- → <u>Solution</u>: Data is interpolated once!

Simple Science Reduction

- kmo_sci_red
 - For every IFU: sky-detection and -subtraction
 - Telluric and illumination correction
- \rightarrow <u>Problem</u>: Data is interpolated twice


Advanced science reconstruction (to come)

- Apply "Simultaneous Reconstruction & Combination"
- Include sky tweaking
- → <u>Solution</u>: Data is interpolated once!


Observation workflow at VLT

IWS:	Instrument Workstation			
PWS:	Pipeline Workstation			
OWS:	Offline Workstation			
Karma:	OB Preparation Tool			
RTD:	Real Time Display			
DO:	Data Organizer			
DRS:	Data Reduction Software			
Calib DB:	contains line lists etc AND a static set of calibration files			
User prepares OBs				

- OBs are executed on IWS
- Exposures are sent to PWS
 - processed automatically with DO and static Calib DB
 - raw and product frames are archived (renamed): master_flat.fits will become KMOS.2012-06-12T10:19:39.553.fits
- Raw and product frames are copied to OWS
- On OWS observer can already do his own calculations or data reduction

3 Observation Modes

Nod to Sky

- Sky is obtained by moving telescope/rotating instrument
- Each IFU has its "own" sky
- Arm configuration remains unchanged
- Objects in Science AND Sky-Exposure

Stare

- Less frequent sky exposures (limit: One sky, many object exposures)
- May be possible to use Sky from dedicated IFUs

Mosaic

- Mapping 8 IFUs (4x2)
 - 9 exposures
 - •72 IFUs combined
 - 16x33 arcsec field
- Mapping 24 IFUs (6x4)
 - •16 exposures
 - 384 IFUs combined
 - •43x65 arcsec field
- Plus one sky exposure

The DO implemented in ESO software can't handle KMOS specific object/sky exposures objects and skies intermixed in one frame

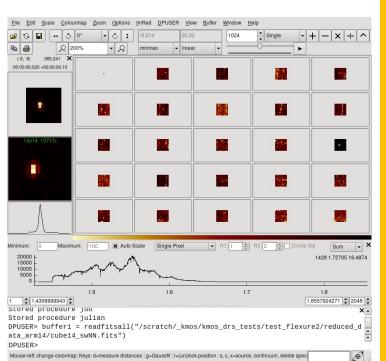
Input frames

IFU #	123	345	678	Timestamp in "DATE-OBS" keyword
Frame 1				2011-01-13T01:00:00.0000
Frame 2			SSO	
Frame 3	SSS	s o s	O S O	10
Frame 4	SSS	SSO	SSO	
Frame 5	o s s	6 O S	Ss o	05

Output frames

Frame	1	Х	•	•	•	•	•	Х	•
Frame	2	•	Х	•	•	•	•	•	•
Frame	3	•	•	•	Х	•	Х	•	•
Frame	4	•	•	•	•	Х	•	•	•
Frame	5	Х	•	•	Х	•	•	•	•
IFU #		1	2	3	4	5	6	7	8
		Х	Х	•	Х	Х	Х	Х	•

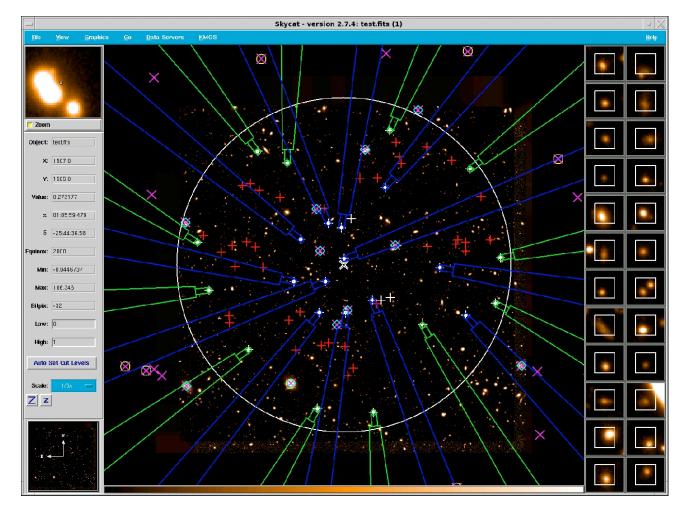
S	
Т О	
T	
AF	
Ĩ	
D	
AT	
Ē	
≥ E	
R	


Graphical Viewers• QFitsView→ MPE, handles extensions• CASAviewer→ ESO• ds9→ old school• fv→ editing tablesConsole ApplicationsMPE(on afs or www.mpe.mpg.de/~ott)• dpuserCommand line interface, same as in QFitsView

- ESO (within Scisoft)
- dfits Print header information
- \$ dfits cube.fits display primary header
- fits -x 1 cube.fits display header of ext. 1

• fitsort	Sort header infor	mation	
\$ dfits	*.fits fits	ort ocs.rot.na	angle
FILE			
OCS.ROT	•NAANGLE		
xcal_HH	H_HHH_0.fits	0.	
ycal_HH	H_HHH_60.fits	60.	

- dtfits Print tables
- \$ dtfits kmo_wave_band.fits



Observation preparation

• KARMA

\rightarrow USM

- GUI
- · Avoid arm collision
- Arm allocation, efficient usage of KMOS
- Loading & visualizing catalogs

Pipeline package (kmos-kit)

- The deliverable is a self-contained package
 - cfitsio
 - wcslib
 - CPL
 - Esorex
 - KMOS
 - Pipeline
 - Manual
 - · kmos-calib

Esorex Basics

Running Esorex

\$ esorex

***** ESO Recipe Execution Tool, version 3.9.6 *****

Libraries used: CPL = 6.1.1, CFITSIO = 3.29, WCSLIB = 4.13.4 (FFTW unavailable)

Help on Esorex

\$ esorex --help

***** ESO Recipe Execution Tool, version 3.9.6 ***** Usage: esorex [esorex-options] recipe [recipe-options] sof

Options:

<...>

Pipeline tools provided by ESO

- Esorex
 - Command line interface
- Gasgano
 - Data organizer
 - GUI frontend to Esorex
- Reflex
 - GUI
 - Workflow oriented
 - Successor of Gasgano

Using KMOS with Esorex

Help on recipes

\$ esorex --man kmo dark

***** ESO Recipe Execution Tool, version 3.9.6 *****

NAME

kmo_dark -- Create master dark frame & bad pixel mask (for monitoring detector health) and derive mean dark current

SYNOPSIS

esorex [esorex-options] kmo_dark [kmo_dark-options] sof

DESCRIPTION

<...>

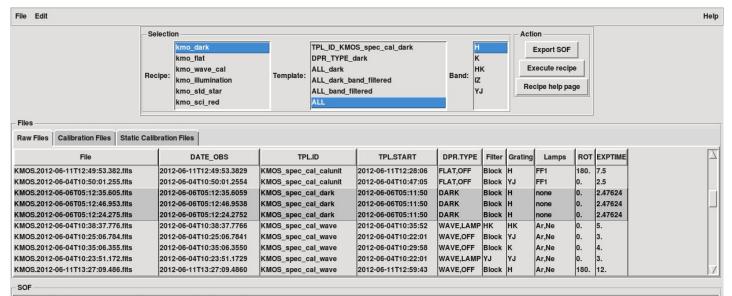
Running recipes

\$ esorex kmo reconstruct --imethod="swNN" --flux=false reconstruct.sof

Where reconstruct.sof (set of files) contains:

kmos_data/KMOS_SPEC_TEC040_0008.fits	ARC_ON
xcal_HHH_HHH_0.fits	XCAL
ycal_HHH_HHH_0.fits	YCAL
lcal_HHH_HHH_0.fits	LCAL
kmos-calib/kmos_wave_band.fits	WAVE_BAND

Problem:


Lots of exposures with different bands and rotator angles originating from different templates. How to find quickly the needed exposures?

Solution:

- Either make use of dfits and fitsort
- Or use the pipelineGUI-tool
- \$ pipeline-GUI.pl

--raw=<data_dir> \ --cal=<calib dir> \

--static=<static_calib_dir>

/scratch/_kmos/kmos_drs_tests/KMOS_tutorial/data/DETDATA//KMOS.2012-06-06T05:12:24.275.fits DARK /scratch/_kmos/kmos_drs_tests/KMOS_tutorial/data/DETDATA//KMOS.2012-06-06T05:12:35.605.fits DARK /scratch/_kmos/kmos_drs_tests/KMOS_tutorial/data/DETDATA/KMOS.2012-06-06T05:12:46.953.fits DARK

Recipe: kmo_dark

Purpose:

Combine individual dark frames into a MasterDark frame and create a preliminary bad pixel mask.

Main Parameters:

```
--cmethod="ksigma" (default), "min_max", "median", "average", "sum" * [others for rejection thresholds, number of iterations, etc.]
```

Example:

```
esorex kmo_dark dark.sof
```

with dark.sof containing:				
dark_	001.fits	DARK		
dark_	002.fits	DARK		
dark_	003.fits	DARK		

It is recommended to supply at least 3 DARK frames

Output frames: MASTER_DARK, BADPIXEL_DARK

* notes on cmethods: (i) ksigma is based on an initial estimate of sigma from a percentile clipping, and then an iterative estimate of the true sigma. (ii) not all methods are appropriate, but all are available since the combining operation is performed by a more generic recipe.

Recipe: kmo_flat

Purpose:

Combine individual flat frames into a MasterFlat frame, create the XCAL and YCAL spatial calibration frames and create the final bad pixel mask.

Main Parameters:

--surrounding_pixels

The amount of bad pixels to surround a specific pixel, to let it be marked bad as well.

Example:

esorex kmo_flat flat.sof	with flat.sof containing:	
	flat_001.fits	FLAT_ON
	flat_002.fits	FLAT_ON
	flat_003.fits	FLAT_ON
	flat_004.fits	FLAT_OFF
	flat_005.fits	FLAT_OFF
	flat_006.fits	FLAT_OFF
	<pre>badpixel_dark.fits</pre>	BADPIXEL_DARK

It is recommended to supply at least 3 FLAT_ON and FLAT_OFF frames

Output frames: MASTER_FLAT, BADPIXEL_FLAT, XCAL, YCAL, FLAT_EDGE

Recipe: kmo_wave_cal

Purpose:

Create the LCAL wavelength calibration frame.

Main Parameters:

none

Example:

<pre>esorex kmo_wave_cal arc.sof</pre>	with arc.sof containing:	
	frame 001.fits ARC ON	
	frame_002.fits	ARC_OFF
	master_flat.fits MASTER_FLA	
	<pre>badpixel_flat.fits</pre>	BADPIXEL_FLAT
	xcal.fits XCAL	
	ycal.fits	YCAL
	flat edge.fits FLAT EDGE	
	kmos_wave_ref_table.fitsREF_LINES	
	kmos_wave_band.fits	WAVE_BAND

Output frames: LCAL, DET_IMG_WAVE

Recipe: kmo_reconstruct

Purpose:

Reconstruct the 24 cubes of a single exposure. Note that no separate bad pixel mask is required because it is already encoded in the calibration frames.

Main Parameters:

```
--imethod="NN", "lwNN", "swNN", "MS", "CS" *
--flux=TRUE (apply flux conservation)
```

Example:

esorex kmo_reconstruct reconstruct.sof <u>with reconstruct.sof containing</u>:

frame_001	fits	OBJE	СТ
xcal.fits		XCAL	
ycal.fits		YCAL	
lcal.fits		LCAL	
kmos wave	band.fits	WAVE	BAND

Instead of OBJECT as well DARK, FLAT_ON, ARC_ON, STD or SCIENCE can be provided

Output frames:

CUBE_DARK, CUBE_FLAT, CUBE_ARC, CUBE_OBJECT, CUBE_STD or CUBE_SCIENC DET_IMG_WAVE (optional)

* note on imethod: 3D drizzle will be added as additional interpolation method

Recipe: kmo_illumination

Purpose:

Create a calibration frame to correct spatial non-uniformity of flatfield.

```
Main Parameters:

--imethod="NN", "IwNN", "swNN", "MS", "CS"

--flux=TRUE (apply flux conservation)
```

```
Example:
```

```
esorex kmo_illumination illum.sof
```

with illum.sof containing:	
frame_001.fits	FLAT_SKY
frame_002.fits	FLAT_SKY
frame_003.fits	FLAT_SKY
<pre>master_dark.fits</pre>	MASTER_DARK
master_flat.fits	MASTER_FLAT
xcal.fits	XCAL
ycal.fits	YCAL
lcal.fits	LCAL
kmos_wave_band.fits	WAVE_BAND

It is recommended to supply at least 3 FLAT_SKY frames

Output frames: ILLUM_CORR

Recipe: kmo_std_star

Purpose:

Create the telluric correction frame

Main Parameters:

--imethod="NN", "IwNN", "swNN", "MS", "CS" --startype="B7III" --magnitude=7

Example:

with std.sof containing:		
frame_001.fits	STD	
frame_002.fits	STD	
master_flat.fits	MASTER_FLAT	
xcal.fits	XCAL	
ycal.fits	YCAL	
lcal.fits	LCAL	
kmos_wave_band.fits	WAVE_BAND	
illum_corr.fits	ILLUM_CORR	
kmos_solar_h_2400.fits	SOLAR_SPEC	
kmos_atmos_h.fits	ATMOS_MODEL	
kmos_spec_type.fits	SPEC_TYPE_LOOK	JP
	<pre>frame_001.fits frame_002.fits master_flat.fits xcal.fits ycal.fits lcal.fits kmos_wave_band.fits illum_corr.fits kmos_solar_h_2400.fits kmos_atmos_h.fits</pre>	<pre>frame_001.fits STD frame_002.fits STD master_flat.fits MASTER_FLAT xcal.fits XCAL ycal.fits YCAL lcal.fits LCAL kmos_wave_band.fits WAVE_BAND illum_corr.fits ILLUM_CORR kmos_solar_h_2400.fits SOLAR_SPEC kmos_atmos_h.fits ATMOS_MODEL kmos_spec_type.fits SPEC_TYPE_LOOKU</pre>

At least 2 STD frames must be supplied.

Output frames: TELLURIC, STD_IMAGE

Calibration Recipes

- kmo_dark
- kmo_flat
- kmo_wave_cal
- kmo_illumination
- kmo_std_star

Science Recipes

- kmo_sci_red
- kmo_reconstruct
- kmo_multi_reconstruct
- kmo_combine

Basic tools

- kmo_arithmetic
- kmo_copy
- kmo_extract_spec
- kmo_fit_profile
- kmo_make_image
- kmo_noise_map
- kmo_rotate
- kmo_shift
- kmo_sky_mask
- kmo_stats

