

Document Title: KMOS

Data Reduction Library Design &
 User Manual

Document Number: VLT-MAN-KMO-146611-007

Issue: 2.4

Date: 24.10.2012

Document
Prepared By:

R. Davies
A. Agudo Berbel
N. Förster Schreiber

Signature and Date:

Document
Approved By: P. Rees Signature and Date:

Document
Released By: A. Fairley Signature and Date:

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

2 of 174

Change Record

Issue Date Section(s) Affected Description of Change/Change

Request Reference/Remarks
1.1 07.09.07 All Merging KMOS Data Reduction

Library and User Manual
1.2 04.02.08 updated 3.2.1, 5.3, 7.3.4, 9.3.1, 9.3.4,

9.3.5, 9.3.11
inserted & updated 5.1

updated after implementing basic
tools 1

1.3 28.10.08 updated 7.3.7, 7.3.9, 7.3.15, 7.3.17,
9.3.7, 9.3.9, 9.3.15, 9.3.17

updated after implementing basic
tools 2

1.4. 08.05.09 updated 6.1.1, 6.1.2, 6.1.3, 6.1.4,
7.1.1, 7.1.1, 7.1.2, 7.1.3, 8.2, 9.1.1,
9.1.2, 9.1.3
deleted 8.4 (kmo_split_frame)

updated after implementing
calibration recipes 2

1.5. 16.07.09 updated 7.3.8, 9.3.8 updated after implementing basic
tools 3

1.6 10.08.10 added sections 4.1, 4.2, 5.5 updated after implementing basic
tools 4

1.7 13.04.10 updated 4.3
updated 5.3.3
updated 6.1

templates to change
F2L can contain multiple extensions
Spec_align recipe obsolete

1.8 10.11.11 All Issue prepared for TRR
2.2 30.03.12 All Issue prepared for PAE
2.3 updated 7.1.6
2.4 updated 3.3

Note: sections denoted as TBD are to be completed after PAE according to the development plan

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

3 of 174

Table of Contents

Change Record ... 2!
Table of Contents ... 3!
Acronyms and Abbreviations ... 7!
Applicable and Referenced Documents ... 8!
Stylistic Conventions .. 9!
Scope of this Document .. 10

PART I: DRS DESIGN .. 11!
1! Instrument Description .. 11!

1.1! Brief Description ... 11!
1.2! Modes and Configurations .. 11!

1.2.1! Instrument Flexure .. 11!
1.2.2! Inputs .. 12!
1.2.3! Outputs ... 12!
1.2.4! Data Formats .. 13!
1.2.5! CPL ... 13!
1.2.6! Pipeline Modes ... 13!

2! Mathematical Description .. 14!
2.1! Interpolation .. 14!

2.1.1! Nearest Neighbour .. 15!
2.1.2! Cubic Spline Interpolation .. 15!
2.1.3! Modified Shepard’s Method ... 16!

2.2! Error Propagation .. 17!
2.2.1! Initial Noise Estimate ... 17!
2.2.2! Mathematical Manipulations .. 17!
2.2.3! Combining Datasets .. 18!
2.2.4! Extracting Spectra .. 18!
2.2.5! Creating Images .. 18!

3! Instrument Data Description ... 19!
3.1! Orientation of the IFUs on the detectors ... 21!
3.2! FITS header keywords ... 22!

3.2.1! Primary header .. 22!
3.2.2! Subsequent header .. 23!

3.3! Raw file types .. 24!
3.3.1! Dark .. 25!
3.3.2! Flatfields ... 25!
3.3.3! Wavelength ... 25!
3.3.4! Standard Star .. 25!
3.3.5! Science Object .. 25!

3.4! Processing Table .. 25!
4! Data Reduction Library Data Structures ... 27!

4.1! Classification Tags .. 27!
4.2! Intermediate Data Formats .. 28!

4.2.1! Detector based floating point products ... 28!
4.2.2! 1-dimensional detector based products .. 28!
4.2.3! Detector based binary digit products .. 29!

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

4 of 174

4.2.4! 1-dimensional IFU based products ... 29!
4.2.5! 2-dimensional IFU based products ... 30!
4.2.6! Naming convention .. 31!

4.3! External Data Formats ... 31!
4.3.1! Lists .. 31!
4.3.2! 1-dimensional spectra ... 32!
4.3.3! Lookup tables ... 32!

4.4! Final Output Data Formats .. 32!
4.4.1! 3-dimensional IFU based products ... 32!

4.5! Calibration Data Formats .. 33!
4.6! RTD Data Formats .. 35!

5! Data Reduction Library QC1 Parameters ... 38!
5.1! QC1 Parameter descriptions .. 38!

5.1.1! Dark Frames ... 38!
5.1.2! Flat Frames ... 39!
5.1.3! Wavelength Calibration .. 39!
5.1.4! Illumination Correction .. 40!
5.1.5! Standard Star Observations .. 41

PART II: DRS RECIPE REFERENCE ... 42!
6! Preliminaries ... 42!

6.1! Standard workflow .. 42!
6.2! Generating Test Data ... 43!
6.3! Predefined wavelength ranges ... 43!
6.4! Lookup table (LUT) for reconstruction ... 43!

7! Recipes ... 44!
7.1! Calibration & Science Reduction .. 47!

7.1.1! kmo_dark: Master Dark Frames ... 47!
7.1.2! kmo_flat: Master Flat Field .. 51!
7.1.3! kmo_wave_cal: Wavelength Calibration ... 57!
7.1.4! kmo_illumination: Illumination Correction ... 64!
7.1.5! kmo_std_star: Telluric Standard Star ... 69!
7.1.6! kmo_sci_red: Processing for Science Data .. 77!

7.2! Basic Tools .. 83!
7.2.1! kmo_arithmetic: Basic Arithmetic ... 83!
7.2.2! kmo_combine: Combining Cubes .. 86!
7.2.3! kmo_convolve: Convolution .. 93!
7.2.4! kmo_copy: Copy Cube Sections .. 95!
7.2.5! kmo_extract_spec: Extracting Spectra ... 98!
7.2.6! kmo_fit_profile: Fitting Spectral and Spatial Profiles .. 103!
7.2.7! kmo_make_image: Making Images ... 106!
7.2.8! kmo_median: Median Filtering .. 110!
7.2.9! kmo_noise_map: Noise Estimation .. 111!
7.2.10! kmo_reconstruct: Reconstructing a Cube ... 113!
7.2.11! kmo_rotate: Rotating a Cube .. 117!
7.2.12! kmo_shift: Translating a Cube ... 120!
7.2.13! kmo_sky_mask: Creating a Mask of Sky Pixels .. 123!
7.2.14! kmo_stats: Basic Statistics ... 127!

7.3! Development Tools ... 130!

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

5 of 174

7.3.1! kmo_dev_setup: Creating a KMOS-conform FITS file semi-automatically 130!
7.3.2! kmo_fits_check: Check FITS files ... 136!
7.3.3! kmo_fits_stack: Creating a KMOS-conform FITS file manually 138!

8! Data Reduction Library Functions ... 142!
8.1! Acquisition Reduction for RTD .. 142!
8.2! Combine frames using pixel rejection ... 145!
8.3! Scientific reconstruction of a data cube ... 149!

PART III: DRS ADVANCED TOOLS .. 151!
9! IDL functions .. 151!

9.1! kmo_bkg_sub: Subtracting Background ... 151!
9.1.1! Description ... 151!
9.1.2! Flow Chart .. 152!
9.1.3! Input Frames ... 153!
9.1.4! Fits Header Keywords .. 153!
9.1.5! Configuration Parameters ... 153!
9.1.6! Output Frames .. 153!
9.1.7! Examples .. 153!

9.2! kmo_cosmic: Detecting Deviant Pixels ... 154!
9.2.1! Description ... 154!
9.2.2! Flow Chart .. 154!
9.2.3! Input Frames ... 155!
9.2.4! Fits Header Keywords .. 155!
9.2.5! Configuration Parameters ... 155!
9.2.6! Output Frames .. 155!
9.2.7! Examples .. 155!

9.3! kmo_extract_moments: Extracting Flux, Velocity and Dispersion Maps 156!
9.3.1! Description ... 156!
9.3.2! Flow Chart .. 157!
9.3.3! Input Frames ... 158!
9.3.4! Fits Header Keywords .. 158!
9.3.5! Configuration Parameters ... 158!
9.3.6! Output Frames .. 158!
9.3.7! Examples .. 158!

9.4! kmo_extract_pv: Position-Velocity Diagrams .. 159!
9.4.1! Description ... 159!
9.4.2! Flow Chart .. 159!
9.4.3! Input Frames ... 159!
9.4.4! Fits Header Keywords .. 159!
9.4.5! Configuration Parameters ... 160!
9.4.6! Output Frames .. 160!
9.4.7! Examples .. 160!

9.5! kmo_fit_continuum: Fitting the Continuum .. 161!
9.5.1! Description ... 161!
9.5.2! Flow Chart .. 161!
9.5.3! Input Frames ... 161!
9.5.4! Fits Header Keywords .. 161!
9.5.5! Configuration Parameters ... 162!
9.5.6! Output Frames .. 162!

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

6 of 174

9.5.7! Examples .. 162!
9.6! kmo_sky_tweak: Second Order Sky Subtraction .. 163!

9.6.1! Description ... 163!
9.6.2! Flow Chart .. 164!
9.6.3! Input Frames ... 166!
9.6.4! Fits Header Keywords .. 166!
9.6.5! Configuration Parameters ... 166!
9.6.6! Output Frames .. 166!
9.6.7! Examples .. 166!

9.7! kmo_voronoi: Smoothing with Optimal Voronoi Tessellations 167!
9.7.1! Description ... 167!
9.7.2! Flow Chart .. 167!
9.7.3! Input Frames ... 168!
9.7.4! Fits Header Keywords .. 168!
9.7.5! Configuration Parameters ... 168!
9.7.6! Output Frames .. 168!
9.7.7! Examples .. 168

Appendix A Data Processing Tables ... 169!
Appendix B The KMOS data interface dictionary .. 171!

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

7 of 174

Acronyms and Abbreviations
ADU Analog to Digital Unit – unit used to quantify CCD signal intensity
CLIP C Library for Image Processing
CPL Common Pipeline Library
DFO Data Flow Operations Group (ESO Garching)
DFS Data Flow System
DIT Detector Integration Time
DO Data Organiser
DR Data Reduction
DRL Data Reduction Library
DRS Data Reduction Software
ESO European Southern Observatory
FITS Flexible Image Transport System
IFU Integral Field Unit
IPSRV Image Processing Server
KMOS K-band Multi Object Spectrometer
LUT Look-up Table
MPE Max-Planck-Institut für extraterrestrische Physik
OB Observation Block
OS Observing Software
PSF Point Spread Function
RTD Real Time Display
QC Quality Control
UK ATC United Kingdom Astronomy Technology Centre
USM Universitäts-Sternwarte der Ludwig-Maximilians-Universität München
WCS World Coordinate System

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

8 of 174

Applicable and Referenced Documents
[AD01] KMOS technical specification, VLT-SPE-ESO-14660-3190, issue 1.0
[AD02] KMOS Data Reduction Library Specification, VLT-SPE-KMO-146611-001, issue

1.1

[RD01] KMOS Instrument Software Design Description, VLT-SPE-KMO-146606-003,

issue 1.0
[RD02] Bentley J., Friedman J., 1979, “Data Structures for range searching”, ACM

Computing Surveys, 11, 397-409
[RD03] Clark I., Harper W., 2000, “Practical Geostatistics 2000”, pub. Geostokos
[RD04] Yang C.-S. et al., 2004, “12 Different Interpolation Methods”, in Geo-Imagery

Bridging Continents, XXth ISPRS Congress
[RD05] Lekien F., Marsden J., 2005, “Tricubic interpolation in 3 dimensions”, Int. J.

Numer. Meth. Engang, 63, 455-471
[RD06] Renka R., 1988, “Multivariate interpolation of large sets of scattered data”, ACM

Trans. Math. Software, 14, 139-148
[RD07] Shepard D., 1968, “A 2-dimensional interpolation function for irregularly spaced

data”, Proc. 23rd Nat. Conf. ACM, 517-523
[RD08] Farage C., Pimbblet K., 2005, PASA, 22, 249
[RD09] van Dokkum P., 2001, PASP, 113, 1420
[RD10] Davies R., 2007, MNRAS, 375, 1099
[RD11] Cappellari M., Copin Y., 2003, MNRAS, 342, 345

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

9 of 174

Stylistic Conventions
The following styles are used in the description of the data reduction to easily identify the type of
object being referred to:

• Recipe names
lowercase_arial, for example kmo_flat.

• Function names
lowercase_bold_font, for example kmo_create_masterdark.

• I/O names
LowerCaseItalics with each word capitalised, for example MasterDark. References to a specific
column in a fits table, or extension in a fits file, are denoted by suffixing the name or number, for
example MasterFlat: 2.

• Parameter names
lowercase_underscore_italic, with each word separated by an underscore, for example
threshold_sigma.

• Keywords
ALL.UPPERCASE.COURIER.NEW, for example RON. Note that no underscores may be used
for keywords

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

10 of 174

Scope of this Document
This document defines the design of the data reduction library for the KMOS pipeline, including
all modules of the DRL to process KMOS data as well as the additional DFS tools. It provides a
technical description of the instrument modes, data formats and data processing required for
scientific observations, calibrations, and instrument monitoring tasks for KMOS. It is based on
the DRL Specification [AD02] and supersedes that document.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

11 of 174

PART I: DRS DESIGN

1 Instrument Description

1.1 Brief Description
KMOS is a multi-object near infrared spectrograph with a spectral resolution of R~3000,
depending on bandpass observed. It comprises 24 arms which can be positioned so as to cover
almost any combination of objects within a 7.2arcmin patrol field. Each arm is an integral field
spectrometer with a field of view of 2.8arcsec ! 2.8arcsec and a sampling of 0.2arcsec per pixel.
So that the light can be dispersed in the conventional way, each field is sliced by a suite of mirrors
into 14 slitlets, each 14 pixels long. These are then rearranged by a second suite of mirrors into a
single pseudo-longslit. The primary aim of the data processing software is to reconstruct the 3D
data cubes from the 2D data on the detectors.

KMOS is designed so that 8 IFU arms are fed into a single spectrograph and have their light
dispersed onto a single detector. Thus, in total there are 3 spectrographs and 3 detectors. Each
section is identical with all the others. Hence, the format of the data on each detector is, modulo
optical alignment and manufacturing tolerances, identical.

KMOS will generate its own internal flatfields. For this it uses 2 lamps mounted in an integrating
sphere outside the instrument. The light is directed through a sealed tube to another integration
sphere in the centre of the cryostat, and thence to each arm. In order to detect light from the
flatfield lamps, the arms must be positioned correctly outside the patrol field. It is possible that for
some configurations, parts of some arms may be vignetted. In addition, there may be unexpected
spatial non-uniformities in the flatfield. As a result it will be possible to make an illumination
correction by observing a blank sky field during twilight. This will provide a correction to the
spatial (rather than spectral) component of the flatfield.

KMOS will also have internal lamps (Argon and Neon) which will be used for wavelength
calibration. As an example, these are estimated to produce 35 lines in the K-band with more than
100 counts in a 150-second integration.

1.2 Modes and Configurations
Although KMOS itself is a complex instrument, the only observing mode available is multiple
integral field spectroscopy.

The only instrument configuration that the observer can make (and which has an impact on the
subsequent data reduction, with respect to the appropriate calibration data) involves the
wavebands – for each of which there is a single fixed spectral format and range, and a fixed filter.
The wavebands offered cover near-infrared wavelengths from 0.8µm to 2.5µm, and hence the
observing strategy is the same for all bandpasses.

1.2.1 Instrument Flexure

KMOS will be mounted at a Nasmyth focus of the VLT and hence rotates. It is therefore
inevitable that there will be at least some flexure. For individual exposures, the most noticeable

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

12 of 174

impact (i.e. elongated PSF) will be when the telescope is pointing close to zenith and the
parallactic angle is changing rather quickly. However, calculations suggest that spatial flexure
will be very small (much less than 1 pixel). The data processing software will therefore not look
for spatial flexure and hence will also not attempt to correct it, although it should be noted that in
principle this can be done if it becomes necessary.

On the other hand, spectral flexure is expected to be significant: exceeding the Technical
Specification on wavelength accuracy. Although mechanical solutions have been investigated, it
has been decided that it is more reliable, more accurate, and simpler to correct this in software
rather than hardware. Since science exposures will typically have integration times of at least a
few minutes, the OH sky lines will be bright and clear in individual frames. The processing will
reconstruct an initial cube from each science frame using the wavelength solution derived from
the arc lamp. It will then measure the wavelength offset of the frame by comparing the observed
wavelengths of the OH lines with respect to their theoretical wavelengths. This offset will be
folded back into the wavelength solution and the cube reconstructed anew from the raw data (and
the initial reconstruction will be deleted). Thus correcting the spectral flexure will not
compromise the quality of the data by requiring additional interpolation steps.

For frames where the integration time is so short that there are no obvious OH sky lines (e.g.
standard star frames), the wavelength offset can be measured using the deep atmospheric
absorption patterns at the ends of each bandpass. Tests on SINFONI data have indicated that this
method is perfectly viable when there is a sufficiently strong continuum source.

1.2.2 Inputs

The DRS pipeline will receive as input:
 Raw images from KMOS, as a single file with 3 extensions
 Calibration data, of which there are two types:
 master calibrations, generated by the pipeline, typically from daytime calibrations
 ancillary data such as reference line catalogues

1.2.3 Outputs

The KMOS DRS pipeline will create the following data:
 3D cubes, which are calibrated in wavelength, spatial position, and flux.
 associated error cubes (as FITS extension)
 QC1 parameters and performance monitoring values.

It should be noted that spectra will be extracted for standard star observations, in order to generate
the necessary telluric corrections. But in general spectra will not be extracted from science
observations, although it would in principle be possible to do this using exactly the same
technique and recipe as for standard stars. The reason is that often it is not obvious from which
spatial pixels the spectrum should be taken. This is particularly true for observations of high
redshift galaxies (one of the primary science drivers of KMOS), where continuum emission is
either very weak or even undetected. Attempting to extract spectra automatically from fields
where either the object of interest is very faint or there are multiple objects, can lead to
misleading and confusing results. On the other hand, extracting a spectrum manually is very quick
and easy to do within QFitsView. As one moves the cursor across the displayed image of the
spatial field of view, it enables one to see in real time integrated spectra from different groups of

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

13 of 174

spaxels. This tool is already available at Paranal, and users are recommended to use it to do
exactly this. QFitsView also enables the user to create a collapsed image from the cube (or even a
linemap) across any wavelength range in an equally straightforward and speedy manner.

While bad pixel masks are generated during the processing, these are not part of the output. The
main reason is that due to the necessary interpolation step, there does not exist a one-to-one
correspondence between pixels in the final cube and pixels on the detector. However, the impact
of bad pixels is reflected in the noise cube which is created along with the data cube (see Section
2.2). Bad pixels are simply ignored during the interpolation. This will result in a local increase in
the noise, which will be apparent in the noise cube.

1.2.4 Data Formats

Only standard FITS data formats with extensions will be used for tables, 2D and 3D images.
ASCII files will be used for parameter files (e.g. EsoRex or Gasgano configuration files).

1.2.5 CPL

The DRS recipes will be written in standard ANSI/ISO-C99 C using the ESO Common Pipeline
Library.

1.2.6 Pipeline Modes

The DRS pipeline will be able to run in 3 specific default modes which are built from the same set
of recipes but with different input parameters, and 1 more general mode. These are:
 Acquisition pipeline mode: this will run on Paranal in real time to aid in acquiring targets.
In order to achieve the maximum speed, a number of stages will be omitted and the reconstructed
data will be approximate (although sufficient for the task in hand); the final output will be a set of
images.
 On-line pipeline mode: this will run on Paranal in quasi real time in an automated manner
with a primary goal of monitoring the scientific results from execution of an OB, and generating
initial QC parameters.
 Off-line pipeline mode: this will be run by the DFO in Garching in order to generate all
necessary calibration products, which will be certified by the DFO and archived. It will also be
used to generate reduced frames from service mode observations, which are then sent to the
proposer.
 Desktop Processing: the pipeline can be run by an observer at their home institution using
the EsoRex and Gasgano tools. External software such as QFitsView can be used to view
intermediate and final data products; the observer can freely select all parameters; and if required
add in their own processing steps.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

14 of 174

2 Mathematical Description

2.1 Interpolation
In KMOS, reconstruction of a (rectilinear) 3D datacube from raw 2D data will be performed in a
single step. This is no more risky or difficult than interpolating in 2-dimensions. However, being
able to conceptualise it requires that the calibrations are viewed in a particular way. Traditionally,
calibrations are considered to be the mathematical functions (polynomials) which allow one to
correct the curvature in the recorded data. Instead, calibrations should be considered as a look-up
table associating each data value in the raw frame with its (x,y,") position in the reconstructed
cube. This is shown graphically in Figure 1, where the calibration look-up tables would allow one
to go from (a) to (b).

Figure 1: Illustrative example of the perspective required in order to interpolate in 3D. (a)
Observed data are sampled regularly in the reference frame of the detector. (b) This sampling is
irregular in the reference frame of the reconstructed cube; bad pixels can simply be omitted from
the set of sampled points. (c) One can freely specify the required gridding (i.e. spatial/spectral
pixel scale) for the reconstructed data; it is independent of the actual sampling. (d) Each required
grid point is interpolated from the sampled points which lie in its neighbourhood. Any suitable
algorithm (see below) can be used for the interpolation.

The recorded data on the detector can then be considered as a set of values at irregularly spaced
sampling positions in the final cube. Once this is done, one can dissociate the data completely
from the detector frame and simply generate a list of values and positions:
 value0, x0, y0, "0
 value1, x1, y1, "1
 …
 valuen, xn, yn, "n

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

15 of 174

Each grid position in the reconstructed cube is interpolated from its nearby neighbours, which are
selected from this list of data values. Bad pixels are simply excluded from the list. Doing this
brings a number of advantages:

• The 3D datacube can be reconstructed in a single step, improving the noise properties of
the final dataset

• One can combine frames during the interpolation by concatenating as many lists as
required from various raw frames; this simply increases the number of sample points close
to each interpolated grid point.

• One can choose the sampling of the reconstructed cube arbitrarily. This is useful if one
wishes to compare the data to that from another instrument: the KMOS data can be directly
reconstructed at a matching pixel scale.

• The data can be smoothed during the reconstruction (for some algorithms), simply by
increasing the size of the local neighbourhood from which sampling points are taken.

It is fortunate that there are many different schemes available for interpolating points in 3-
dimensional space, since no single one is optimal for every situation. Each has its advantages and
disadvantages. It is for this reason that we will make several schemes available. In this section the
methods we propose to include within the KMOS data reduction software are described. While
these are all standard methods, few have actually been applied extensively to astronomical data. It
is not practical to provide a full description of each here, and so only the salient points are
described. The reader is referred to various references for further details.

2.1.1 Nearest Neighbour

This is the simplest, and also one of the fastest, methods imaginable for interpolation: one simply
adopts the value of the nearest data point. This method is included since no additional noise is
added during the interpolation process, and as a result there may be instances when an observer
wishes to use this method: e.g. when signal-to-noise is more critical than optimal spatial/spectral
accuracy. The efficiency of this method can be enhanced using the cell method developed by
Bentley & Friedman (1979) [RD02]. A script called ngp.pro which performs this interpolation
is available from the IDL Astronomy User’s Library.

This method is available in the KMOS pipeline as value “NN” in the corresponding parameter
settings.

2.1.2 Cubic Spline Interpolation

Cubic spline interpolation is a standard technique which is discussed in detail in, amongst others,
Numerical Recipes. As far as we are aware, it is applied commonly throughout astrophysical data.
The goal of a cubic spline is to get a formula that is smooth in the first derivative and continuous
in the second derivative, not only within an interval but also at its boundaries. We will use the
natural cubic spline, which has zero second derivative at its boundaries.

The issue here is how to apply it in 3 dimensions. A method has been developed by Lekien &
Marsden (2005) [RD05] which does this; but it requires that the data are gridded regularly. While
the KMOS data are gridded regularly on the detector, their position (x,y,") is not uniform and
therefore it would be quite difficult to apply this method – indeed to do so one would need to
calculate accurately where on the detector any particular point in (x,y,") would fall.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

16 of 174

The alternative most commonly employed is to perform multiple 1-dimensional interpolations.
This makes the cubic spline method relatively straight forward mathematically. One useful
characteristic of the data in this respect is the fact that the pixel spacing perpendicular to the
slitlets in each IFU is regular – which, due to optical distortions, is not the case either along each
slitlet or along the spectral axis. One can then perform the first set of interpolations along this axis
and then propagate the regular spacing to the other dimensions.

This method is available in the KMOS pipeline as value “BCS” in the corresponding parameter
settings.

2.1.3 Modified Shepard’s Method

This fits a smooth function to a set of data points scattered in 3 dimensions using a modification
by Renka (1988) [RD06] of a method developed by Shepard (1968) [RD07]. The necessary
algorithms are part of the NAG library (their nag_3d_shep_interp and
nag_3d_shep_eval routines). It is also available in IDL as the grid3.pro routine.

The original basic method constructs a function Q(x,y,z) which interpolates a set of m scattered
data points at positions (xi,yi,zi) and having values fi with a weighted mean:

where the weights are simply

The modification is that the method is made local by truncating the weights wi beyond a specified
distance Rw.

This method is available in the KMOS pipeline as value “swNN” in the corresponding parameter
settings, where the truncation radius can be specified (recommended box size is 1.1 pixels). An
analogous linear distance weighted scheme is also available under the name “lwNN”.

We note that in the full Modified Shepard’s method, the performance is improve by replacing
each fr by qr(x,y,z) which is a quadratic fitted by weighted least-squares to local data (i.e. within a
radius Rq). The resulting surface is continuous and has continuous first partial derivatives. It is the
calculation of each qr(x,y,z) that takes most of the processing time, but nevertheless the method is
remarkably fast, as shown by Yan et al. (2004). The radii Rw and Rq are chosen to be large enough
to include Nw and Nq data points respectively, and it is these latter numbers that define how
localised the interpolant is. For smaller numbers, the interpolation only uses local data and so is
faster but possibly less accurate; for larger numbers the computational cost is higher. The method
is not thought to be particularly sensitive to the choice of these parameters and typical values of
Nw = 32 and Nq = 17 seem to work well, based on experimental results reported by Renka (1988).

!

!

=

== m

i
i

m

i
ii

zyxw

fzyxw
zyxQ

1

1

),,(

),,(
),,(

222)()()(
1),,(

iii
i zzyyxx

zyxw
!+!+!

=

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

17 of 174

2.2 Error Propagation
One of the goals of the pipeline is to produce (at least a reasonable approximation to) an error
cube to complement the final reduced and combined data cube. This is an important consideration
since the noise is strongly wavelength dependent – being affected most by the presence of OH
lines and the thermal background. In addition, in a combined cube, the noise will be spatially
dependent.

In principle creating a noise cube ought to be straight forward since the basic mathematics of
error propagation are straight forward and well known. In practice, this is not so, most notably
due to systematic effects when combining different datasets. Any useful estimate of the error
should include these, and as a result our methods assess the noise from the data themselves rather
than simply propagating a formal estimate.

2.2.1 Initial Noise Estimate

It is assumed that the gain (e-/ADU) and the readnoise (e-) are either known or can be measured.
In this case the noise in any raw 2D frame can be found (or strictly, only estimated, because the
counts measured are themselves subject to noise) simply as

This relation can be tested as follows: for a large number (e.g. 20) identical exposures, the
standard deviation between the values at each position on the detector should be equal to # as
estimated above. Alternatively, since the readnoise is approximated by the noise in a frame with
exposure time of MINDIT, this same method can be used to derive the gain.

2.2.2 Mathematical Manipulations

The recipe kmo_arithmetic allows one to perform mathematical manipulations on the data. For
these cases, the errors can be propagated in a strictly mathematical way. This applies similarly to
the recipes kmo_rotate and kmo_shift. We have ignored covariance terms since they are
expected to be small for uncorrelated data.

For example, if one adds (or subtracts) two frames then (ignoring cross terms) the noise adds in
quadrature.

if x = au+bv then

And if one multiples (or divides) two frames, then (again ignoring cross terms) the noise
combines as:

if x = auv then

Similarly, raising a number to some power

if x=aub then

gain
readnoisegaincounts

ADU
2

)(
+!

="

2222
vux ba !!! +=

2

2

2

2

vux
vux !!!

+=

u
b

x
ux !!

=

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

18 of 174

And lastly, for exponentials and logarithms one has

if x=aebu then

and

if x=a ln(bu) then

2.2.3 Combining Datasets

We described two methods for estimating the noise in the result when multiple cubes are
combined. Both of these options will be available; the latter will be the default.

If one is combining cubes which have either small spatial dithers between them (i.e. multiple
exposures of the same field) or large dithers (i.e. in order to mosaic a larger field) one can in
principle use the formal relations above to combine the individual error estimates. Thus

where there are pixels overlapping. For all image regions where there is no overlap one simply
propagates the noise estimate directly.

While this can always be applied, it has a disadvantage in that it does not take into account
systematic effects between the different data sets being combined (e.g. offsets in the background
level). Thus an alternative method which will be offered is to estimate the noise directly from the
standard deviation of the pixel values at each spatial/spectral position. This has the advantage that
one can iteratively reject values which lie outside a threshold defined in terms of the standard
deviation of the (remaining) pixels – thus yielding a better mean value in the combined cube.
The only restriction is that such a noise estimate can only be made if there are at least 3 values
available at any given spatial/spectral position; in practice positions where this criterion is not met
will simply be assigned a noise of NaN.

2.2.4 Extracting Spectra

The process of extracting a spectrum from a datacube is simply adding up spectra within a given
aperture (possibly weighted appropriately). The noise can therefore be propagated from the cube
to the spectrum very simply, by using the relation for a weighted sum given in Section 2.2.2.

2.2.5 Creating Images

Images are created simply by collapsing the cube along its spectral axis within specified
wavelength ranges (and perhaps also excluding some intermediate wavelength ranges). As for
spectra, the noise can therefore easily be propagated using the relation for a weighted sum in
Section 2.2.2.

u
x b
x

!
!

=

u
a u

x
!

! =

)...(1 22
2

2
1 ncombine n

!!!! +++=

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

19 of 174

3 Instrument Data Description

The aim of this section is to describe the structure of the raw data produced by KMOS, which
corresponds to the RAW format.

KMOS comprises 24 IFUs, each of which has 14!14 spatial pixels and approximately 2000
spectral pixels. The data from these will be recorded by three 2k!2k HAWAII 2RG detectors,
with 8 IFUs assigned to each detector. The field of each IFU will be sliced into 14 slitlets which
will be rearranged along a pseudo-longslit and then dispersed. The raw data for each IFU will
therefore consist of 14 sets of standard 2-dimensional (1 spatial, 1 spectral) slit spectra, which will
be arranged next to each other on the detector, separated by a few blank pixels. The same pattern
will be repeated 8 times for each of the 3 detectors. A single exposure will therefore produce
approximately 50Mb data. Figure 3 illustrates how the data will appear on each detector. See also
Figure 15 for an illustration of how the raw data will appear in the RTD.

A single integration with KMOS will produce three 2-dimensional frames, each 2048!2048
pixels, stacked in 3 extensions of a single fits file with an empty primary header.

Figure 2 Format of a RAW file as the instrumentation software delivers it. The value for the
EXTNAME keyword can be seen in the blue rectangles.

Calibration observations will be performed in a standard way and will typically yield data with a
similar format: darks, flats, wavelength calibration, spectral curvature, and slitlet alignment. The
exceptions are the illumination correction and standard stars. These will all be described in
Section 4.2

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

20 of 174

Figure 3 - illustrative layout of the data format on each detector (curvature has been enhanced for
visual purposes). Upper panel: full detector showing OH emission lines on the H-band; Lower
panel: left side, stretched to show individual slitlets within each IFU are arranged.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

21 of 174

3.1 Orientation of the IFUs on the detectors
Due to the optical path realised in the KMOS instrument the spatial orientation of the IFUs on the
detector frames isn’t the same for all of them, as one would expect intuitively. The orientation of
a reconstructed slitlet of an IFU can be flipped or rotated. The orientation of the wavelength axis
never changes. The wavelength is always lowest at the bottom and highest at the top of the
detector frame as depicted in Figure 3.

Figure 4 Numbering of pixels and slitlets as they are referenced to in Figure 5

For IFUs 17, 18, 19, and 20 the pixels in a slitlet are orientated from left to right and the slitlets
are stacked from top to bottom.
For IFUs 21, 22, 23 and 24 the pixels in the slitlet are oriented just the other way round, from
right to left. As well the stack orientation is flipped, it goes from bottom to top.
Whereas in IFUs 1, 2, 3, 4, 13, 14, 15 and 16 the slitlets are oriented vertically from bottom to
top. The stacks are stacked from left to right.
Finally in IFUs 5, 6, 7, 8, 9, 10, 11 and 12 the slitlets are also vertical but go from top to bottom
and they are stacked from right to left.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

22 of 174

Figure 5 Orientation of the slitlets for the different IFUs

3.2 FITS header keywords
The tables below define the FITS header keywords which are required by the data reduction
pipeline. The Instrumentation Software will provide these keywords in the headers of raw frames
– see KMOS Instrument Software Design Description [RD01].

3.2.1 Primary header

Keyword value comment
DATE string Date the file was written
DATE-OBS string Observing date

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

23 of 174

EXTEND bool There may be FITS extensions
NAXIS int number of array dimensions
NAXIS1 int # of pixels in axis1
NAXIS2 int # of pixels in axis2
HIERARCH ESO DET NDIT int Number of detector integrations
HIERARCH ESO DET SEQ1 MINDIT double Minimum DIT
HIERARCH ESO OBS ID int Observation block ID
HIERARCH ESO INS FILTi ID
(i=1-3)

string Filter unique id

HIERARCH ESO INS GRATi ID
(i=1-3)

string Grating unique ID

HIERARCH ESO INS LAMPi ST
(i=1-4)

bool arc lamp status (on/off), i=1,2
flatfield lamp status (on/off) , i=3,4

HIERARCH ESO OCS ARMi ALPHA
(i=1-24)

double RA centre of arm i (J2000)

HIERARCH ESO OCS ARMi DELTA
(i=1-24)

double Dec centre of arm i (J2000)

HIERARCH ESO OCS ARMi NAME
(i=1-24)

string Target name hosted by arm i

HIERARCH ESO OCS ARMi NOTUSED
(i=1-24)

string String containing error message. If
keyword isn’t present, then the arm is
functional

HIERARCH ESO OCS ARMi TYPE
(i=1-24)

HIERARCH ESO OCS ROT OFFANGLE double Rotator offset angle
HIERARCH ESO OCS TARG DITHA double Telescope dither in ALPHA [arcsec]
HIERARCH ESO OCS TARG DITHD double Telescope dither in DELTA [arcsec]

3.2.2 Subsequent header

Keyword value comment
EXPTIME double Integration time
EXTNAME string string describing the extension
NAXIS int number of data axes
NAXIS1 int length of data axis 1
NAXIS2 int length of data axis 2
XTENSION string IMAGE extension
HIERARCH ESO DET CHIP GAIN double Gain in e-/ADU
HIERARCH ESO DET CHIP
INDEX

int Chip index

HIERARCH ESO DET CHIP RON double Read-out noise in e-

The reduction pipeline updates the headers in a way that information applying to all frames is
stored in the empty primary header. Detector or IFU specific information is stored in the
subsequent headers (see also section 4).

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

24 of 174

3.3 Raw file types
The raw files are generated using different templates that represent the available modes to use
KMOS with. When a template is executed the following keywords are written into all generated
files:

- HIERARCH ESO DPR TYPE (unique identifiers to perform DO categorisation)
- HIERARCH ESO DPR CATG (qualitative category of the file)
- HIERARCH ESO DPR TECH (technical category of the file)
- HIERARCH ESO OCS TEMPL ID (the applied template)

With these keywords it is possible for the Data Organiser (DO) to classify the files and provide
the corresponding DO category that is needed to run the KMOS pipeline properly.

The raw files with DPR.TECH equal IMAGE or SPECTRUM require no reconstruction of the
data cubes. In these cases the data will be treated as the simple 2D frame that it is.

DO category DPR TYPE DPR CATG DPR TECH OCS TEMPL ID
DARK DARK CALIB IMAGE KMOS_spec_cal_dark
FLAT_ON
FLAT_OFF

FLAT,LAMP
FLAT,OFF

CALIB
CALIB

SPECTRUM
IMAGE

KMOS_spec_cal_calunitflat

ARC_ON
ARC_OFF

WAVE,LAMP
WAVE,OFF

CALIB
CALIB

SPECTRUM
IMAGE

KMOS_spec_cal_wave

FLAT_SKY FLAT,SKY CALIB IFU KMOS_spec_cal_skyflat
STD OBJECT,SKY,STD,FLUX CALIB IFU KMOS_spec_cal_stdstar

KMOS_spec_cal_stdstarscipatt
SCIENCE OBJECT,SKY SCIENCE IFU KMOS_spec_obs_nodtosky

KMOS_spec_obs_stare
KMOS_spec_obs_mapping8
KMOS_spec_obs_mapping24
KMOS_spec_obs_freedither

The following DO categories are not used in the pipeline itself.

Although acquisition frames will need to be processed in order to reconstruct the acquisition
images needed for the real time display, the recipe will be triggered by CLIP rather than any
header keywords (because the frames do not have headers at this stage).
For acquisition frames one exposure will have objects in (some) arms and the subsequent
exposure will be of blank sky fields. However, for most science observations, this will not be the
case: in any single exposure some arms will be on sky and some arms will be on objects.

DO category DPR TYPE DPR CATG DPR TECH OCS TEMPL ID
ACQ_OBJ OBJECT ACQUISITION IFU KMOS_spec_acq

KMOS_spec_acq_lutatcfstars
ACQ_SKY SKY ACQUISITION IFU KMOS_spec_acq

KMOS_spec_acq_lutatcfstars
ACQ_STD OBJECT,SKY ACQUISITION IFU KMOS_spec_acq_stdstar

KMOS_spec_acq_stdstarscipatt

The technical templates do not require specific data processing other than reconstructing the
cubes. All measurements of the source size and position will be done afterwards manually.

DO category DPR TYPE DPR CATG DPR TECH OCS TEMPL ID
FOCUS LAMP,FOCUS TECHNICAL SPECTRUM KMOS_spec_tec_focus
LOOKUP OBJECT, LOOKUP TECHNICAL IMAGE KMOS_spec_tec_lutatcfstars

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

25 of 174

3.3.1 Dark

File types: DARK
These frames are observed with the filter wheel in a ‘blocked’ position. Dark frames are used as
the OFF frames for the illumination correction.

3.3.2 Flatfields

File types: FLAT_ON, FLAT_OFF, FLAT_SKY
The standard flatfield is illuminated by a pair of lamps via an integrating sphere. Each set of
flatfields FLAT_ON has an associated set of FLAT_OFF frames, taken immediately before
(although in principle a standard dark frame could suffice). In case there are spatial non-
uniformities in the flatfield, and also to take into account vignetting further upstream in the light
path, an illumination correction can be performed. Since this is taken on sky, a dark frame is used
as the corresponding OFF frame. The edges of the illuminated regions of the flatfields can also be
used to trace the spectral curvature (see Section Error! Reference source not found.).
The spectral curvature is measured from the flatfield. In order to measure the spectral curvature The spectral curvature is measured from the flatfield. In order to measure the spectral curvature
and calibrate KMOS while it is mounted, the edges of the illuminated regions in the flatfields will
be traced. This provides 2 traces per slitlet. As a result one has to assume that the magnification as
a function of wavelength is uniform across the slitlet.

3.3.3 Wavelength

File types: ARC_ON, ARC_OFF
These frames are illuminated simultaneously by Ar and Ne arc lamps. Each ARC_ON frame has
an associated ARC_OFF frame, taken immediately before (although in principle a standard dark
frame could suffice).

3.3.4 Standard Star

File types: STD (object and sky)
This type identifies observations of a telluric standard star. In addition, for the many such stars
where the magnitude is well known, these also provide the photometric calibration. Because the
standard stars are observed in an IFU, there are no issues associated with limited slit width, seeing
corrections, etc.

3.3.5 Science Object

File types: SCIENCE (object and sky)
These frames are illuminated by a science target. It should be noted that in most cases, for any
particular exposure only some of the 24 IFUs will be on objects and the rest will be on sky. The
necessary keywords OCS.ARMi.TYPE indicating whether each individual IFU is on sky or on
object in any particular frame are written into the header by the OS.

3.4 Processing Table
The different recipes for generating calibration and science products are listed in the Data
Processing Tables in Appendix A. These relate the various calibration recipes to their respective
raw data types. The tables connect the classification keywords, the DO category, and the

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

26 of 174

observing template. Required input from the calibration database is indicated, as are the final
products. A summary of the main processing steps is given, as are the FITS header keywords
needed by the recipe.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

27 of 174

4 Data Reduction Library Data Structures
During the different processing steps, the raw data are modified and associated with additional
information, which is either produced during the reduction or originates externally. The resulting
data types are described in this section.

Note that in both of these tables, the file type is given as a 3-character identification:

! the first character refers to whether the data in the file is stored as a floating point number
(‘F’, number of bits unspecified) or a binary digit (‘B’);

! the second character indicates the dimension of the data (1, 2, or 3);
! the third character indicates whether the data refers to a complete detector array (‘D’), an

individual IFU (‘I’), a look-up table or list (‘L’), or a spectrum of arbitrary size (‘S’).

4.1 Classification Tags
The classification of intermediate and final data products that will be generated by the calibration
recipes and pipeline is given below, together with the recipe which generates them and a brief
description of the product:
PCATG file type recipe description
MASTER_DARK F2D kmo_dark - dark frame (including noise map)
MASTER_FLAT
XCAL
YCAL

F2D
F2D
F2D

kmo_flat - flatfield frame (including noise map)
- spatial solution lookup frame
- spatial solution lookup frame

LCAL F2D kmo_wave_cal - wavelength solution lookup frame
ILLUM_CORR F2I kmo_illumination - illumination correction to flatfield
TELLURIC

STAR_SPEC
STD_IMAGE

F1I

F1I
F2I

kmo_std_star - normalised telluric spectrum
(including noise map)
-extracted star spectrum
-images from a standard star cube
collapsed along the spectral axis

SCI_COMBINED
SCI_RECONSTRUCTED

F3I
F3I

kmo_sci_red - reconstructed and combined science
cubes (including noise map)
- intermediate reconstructed science
cubes (including noise map)

The classification of ancillary external data files is given below:
PCATG file type description
ARC_LIST F1L list of arc line wavelengths & strengths
OH_LIST F1S spectrum of OH line wavelengths & strengths
ATMOS_MODEL F1S high resolution model spectrum of atmospheric

transmission
SOLAR_SPEC F1S high resolution solar spectrum
SPEC_TYPE_LOOKUP F2L lookup table to find stellar effective temperature

from spectral type and luminosity class

The various formats are detailed in the following subsections.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

28 of 174

4.2 Intermediate Data Formats
All files have an empty primary header, data and noise maps are stored in extensions as described
below.

4.2.1 Detector based floating point products

File Type: F2D
PCTAG: MASTER_DARK, MASTER_FLAT
For these files, the detector pixel space (i.e. 2048!2048 pixels) is still the reference frame in
which the data are stored. The data of each detector is stored in an extension of the FITS file. for
the dark and flat frames), these will be stored in extensions of the same FITS file. In this case the
first extensions will contain the data of the first detector, the second extension will contain the
associated noise map and so on.

Figure 6 The two valid configurations of a F2D-frame either with or without noise maps. The
value for the EXTNAME keyword can be seen in the blue and red rectangles.
4.2.2 1-dimensional detector based products

File Type: F1D
PCTAG: -
These files can be created by some intermediate recipes, e.g. kmo_stats. When statistics are to be
calculated from a detector based frame, then the output frame follows the same naming
convention. F1D frames can either have one or three extensions. With noise it will be two or six
extensions.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

29 of 174

Figure 7 The valid configurations of F1D-frames either with or without noise maps.
4.2.3 Detector based binary digit products

File Type: B2D
PCTAG: BADPIXEL_DARK, BADPIXEL_FLAT
These files also have the detector as the reference frame in which the data are stored, in fact they
are almost identical to F2D frames. But the data stored has another meaning: i.e. ‘0’ stands for a
bad pixel, ‘1’ for a good pixel. The FITS files will have extensions corresponding to the 3 detec-
tors (like in Figure 6 on the left side). A B2D frame can’t contain any noise frames.
Note that although a list of bad pixels would require less file space, it requires additional proces-
sing and does not allow for an easy way to visually check the bad pixel map.
To distinguish F2D from B2D frames the EXTNAME keyword contains DET.1.BADPIX,
DET.2.BADPIX and DET.3.BADPIX.

Figure 8 The valid configuration of a B2D-frame either with or without noise maps.
4.2.4 1-dimensional IFU based products

File Type: F1I
PCTAG: TELLURIC, STAR_SPEC
The IFU spectral domain is the reference for the storage of these data – i.e. the data is a simple
spectrum, the length and sampling of which correspond exactly to those of the spectral axis of a
reconstructed cube. The same telluric correction will be used for all IFUs, and so the only
extension in the FITS file will correspond to the noise spectrum. A F1I-frame can either contain

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

30 of 174

the spectrum of just one IFU or of all 24 IFUs. For inactive IFUs (for which hence no data exists)
an empty extension is inserted for data as well for the noise map.

Figure 9 All valid configurations of a F1I-frame either with or without noise maps. The value for
the EXTNAME keyword can be seen in the blue and red rectangles.
4.2.5 2-dimensional IFU based products

File Type: F2I
PCTAG: ILLUM_CORR, STD_IMAGE
The IFU spatial field is the reference for the storage of these data (i.e. 14!14 pixels) – i.e. the data
correspond to a cube which is collapsed along the spectral axis. Since KMOS has 24 IFUs, the
data will be stored in up to 24 extensions or in 48 extensions with noise maps in a single FITS
file. All extensions will be presenting every file produced; those for which no data exist will be
left empty. A F2I-frame can either contain images of just one IFU or of all 24 IFUs.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

31 of 174

Figure 10 All valid configurations of a F2I-frame either with or without noise maps.
4.2.6 Naming convention

For all intermediate data formats described in section 4.2 (and also for F3I in section 4.4.1) the
convention is followed that in all extensions the EXTNAME keyword is describing its origin and
content. The format is “TYPE.NR.CONTENT”,
where TYPE can be DET or IFU,
where NR can be a number between 1 to 24 and
where CONTENT can be DATA, NOISE or BADPIX.

This convention is modified when cubes are combined using the recipe kmo_combine. Since the
cubes to be combined needn’t to stem from the same IFU (for example an object is observed in
the first OB on IFU #2 and in the second OB on IFU #13), the format will be changed to
“TYPE.CONTENT”.The user will have to keep track himself of the history of the IFUs if he
desires so. kmo_combine will take the header of the first fits file in the sof-file and modify it
accordingly.

4.3 External Data Formats
All files have an empty primary header, data and noise is stored in extensions as described below.

4.3.1 Lists

File Type: F1L
PCTAG: ARC_LIST
These file types will be stored as a binary fits table. The EXTNAME keyword contains the string
“LIST”.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

32 of 174

The line list will have three columns: the first column will contain a list of wavelengths
corresponding to the positions of the lines; the second column will contain a corresponding list of
approximate line strengths. The third column contains a string, either “Ar” or “Ne” depending to
which gas the line belongs to. With this information, it will be possible both to generate a
spectrum at the appropriate resolution to match that of the bandpass and also to unambiguously
identify particular lines in an observed spectrum. Note that because two different arc lamps are
used, there is uncertainty in the relative strengths of the lines between these two lamps. Therefore
the arc line strengths will not be used by the automatic pipeline. However, the information will be
retained in the data file for the astronomer and possible future upgrades or other unforeseen uses.

4.3.2 1-dimensional spectra

File Type: F1S
PCATG: ATMOS_MODEL, SOLAR_SPEC, OH_LIST
These data formats will be stored as linearly sampled spectra, with the standard parameters
defining the wavelength sampling given in the header. It is foreseen that these spectra will be at
very high resolution and cover the entire wavelength range of all the bandpasses used within
KMOS. When needed, the appropriate section of the spectrum can be convolved to the required
resolution. The structure of a F1S file follows the definition of a F1I file, except that there can
only be one data extension without noise and the EXTNAME keyword contains the string
“SPEC”.

4.3.3 Lookup tables

File Type: F2L
PCATG: SPEC_TYPE_LOOKUP, FLAT_EDGE, REF_LINES
A lookup table is by definition 2-dimensional. Therefore this data format will consist of a binary
fits table with an appropriate number of rows and columns. The EXTNAME keyword contains
the string “LIST”.
In the case of SPEC_TYPE_LOOKUP, the aim is to cover the most common MK spectral types so
that the effective temperature of any telluric star (typically a B or G2V star) can be estimated:
luminosity classes: I, II, III, IV, V
spectral type: O5, O9, B0, B2, B5, B8, A0, A2, A5, F0, F2, F5, F8, G0, G2, G5, G8
This file type can either have one or 24 extensions.

4.4 Final Output Data Formats
4.4.1 3-dimensional IFU based products

File Type: F3I
PCATG: CUBE_DARK, CUBE_FLAT, CUBE_ARC, CUBE_OBJECT, CUBE_STD,
REDUCED_CUBE
The processed datacubes (i.e. 14!14!2048 pixels), one corresponding to each of the 24 IFUs is
stored in a F3I fits file. As the other formats described above, F3I has as well an empty primary
header and data and noise maps are stored alternately. Extensions for inactive IFUs are left empty.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

33 of 174

Figure 11 All valid configurations of a F3I-frame either with or without noise maps.

4.5 Calibration Data Formats
Since the orientation of all IFUs isn’t the same due to the optical path of the KMOS instrument
the spatial solution lookup frames XCAL and YCAL (see section 4.1) are intermixed. The
assembly of the RAW frames in respect to the IFUs is explained in section 3.1 in detail.

Following figures show the setup of the three calibration frames XCAL, YCAL and LCAL:

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

34 of 174

Figure 12 XCAL: In the first two detector frames there is the same data value inside each slitlet.
So the visible gradient extends over the whole IFU. In the third detector frame the extends over
each slitlet individually (see magnification)

Figure 13 YCAL: The same pattern as above is observed but just switched between the detectors.

Figure 14 LCAL: The gradiant extends over the wavelength axis in the same way for all
detectors, IFUs and slitlets.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

35 of 174

4.6 RTD Data Formats
Data which will be displayed in the RTD does not have a designated type since it is not archived,
nor does it play a role in the pipeline processing of the science OBs. The formats are included
here for completeness and to clarify how the data will appear in the RTD.
There will be 2 RTDs for KMOS.
The first will display the raw data, which will appear as a single frame, from which the
contributions from the 3 detectors (each 2048!2048 pixels) are spliced together in a row, making
a frame of 6144!2048 pixels as shown in Figure 15.

Figure 15: illustrative example of how the raw data will appear in the first RTD (top), with the 3
detector frames spliced together. Below is shown a zoom of one part of this, in which it is
possible to distinguish individual slitlets from the IFUs, the OH lines, and the spectral traces of 1
or 2 objects. Note that no curvature has been included in this example; the actual curvature will be
small.

The second RTD will show the reconstructed images. There will be a button so that the user can
choose between seeing these images in a grid (Figure 16) or in their actual location within the
patrol field (Figure 17).

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

36 of 174

Figure 16: reconstructed images from the 24 IFUs displayed in a 5!5 grid format. This allows
one to see immediately and easily what each IFU is looking at.

Each sub-image of the grid-format will be 14!14 pixels. Since a spacing of 1 pixel is included
between each sub-image, the whole montage will be 76!76 pixels. Any sub-images which are not
reconstructed (e.g. during acquisition, typically only a few IFUs will be used) will be left blank.
Thus the position of a sub-image for a particular IFU will always be the same, regardless of how
many are reconstructed.

The patrol field format will cover 7.2arcmin (plus some extra blank space) at a sampling of 0.2”
which matches that of the individual reconstructed images. Thus it will be 2200!2200 pixels. The
sub-images will be inserted at the nearest integer position to their actual locations. This is done to
avoid the necessity of resampling the reconstructed images, and because this accuracy (i.e. to half
a pixel, or 0.1”) is sufficient for the purpose of this format.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

37 of 174

Figure 17: reconstructed images from the 24 IFUs placed in their actual locations within the
patrol field. This mode will mostly be used for testing and commissioning KMOS, but may also
be useful during certain astronomical acquisitions and observations.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

38 of 174

5 Data Reduction Library QC1 Parameters
KMOS has 24 IFUs, each of which has 14 slitlets, giving a total of 336 distinct 2-dimensional
spectra. Due to alignment and manufacturing tolerances, the spectral traces and dispersion
solutions of these spectra need to be determined independently (e.g. there could be discrete shifts
between neighbouring spectra). Furthermore, these parameters will depend on the bandpass used.
As a result monitoring all the coefficients of all the fits would yield many thousands of QC1
parameters – which is clearly impractical.

This section concerns the way in which the number of QC1 parameters will be kept to a
manageable total. However, it should be realised that in many cases, it is nevertheless necessary
to track QC1 parameters separately for

(a) each of the 3 detectors since these correspond, in effect, to optically separate systems.
(b) each of the 5 bandpasses, since many of the optical properties depend on the
grating/filter used.

Information about the detector or grating to which each QC1 parameter is associated will be given
in the associated PAF.

A concise summary of all the QC1 parameters is given in Appendix B.

5.1 QC1 Parameter descriptions
5.1.1 Dark Frames

QC DARK
Direct calculation of the mean value in the Master Dark frame for each detector.
(Stored in each detector header of all created output frames)

QC DARK MEDIAN
Direct calculation of the median value in the Master Dark frame for each detector.
(Stored in each detector header of all created output frames)

QC RON
Direct calculation of the mean value of the noise of the Master Dark frame for each detector.
(Stored in each detector header of all created output frames)

QC RON MEDIAN
Direct calculation of the median value of the noise of the Master Dark frame for each detector.
(Stored in each detector header of all created output frames)

QC DARKCUR
Mean value (with iterative rejection) for each detector of a long exposure Master Dark frame,
after the Master Dark has been subtracted, divided by the exposure time.
(Stored in each detector header of all created output frames)

QC BADPIX NCOUNTS
Total number of pixels in each detector flagged as ‘bad’ in a Master Dark or Master Dark frame.
The mimimum number is 32’704, since the four-pixel border around the detector frame (used to
monitor detector health) is marked always as bad.
(Stored in each detector headers of all created output frames)

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

39 of 174

5.1.2 Flat Frames

QC FLAT EFF
The main concern here is whether the brightness of the flatfield lamps has changed, and so a
single value suffices for all detectors together. It is defined as the mean normalisation for the
Master Flat divided by the exposure time, for each bandpass.
(Stored in the primary headers of all created output frames)

QC FLAT SAT NCOUNTS
This parameter tracks how many of the 12 million pixels (in all three detectors) are saturated in
the Master Flat, for each bandpass. It allows one to set the optimal exposure time (DIT). A pixel
is flagged as saturated if its value is above some defined limit in at least two of the individual ON
frames used to generate the Master Flat.
(Stored in the primary header s of all created output frames)

QC FLAT SN
This parameter tracks the signal-to-noise in the illuminated regions of the Master Flat, for each
bandpass. It is defined as the total signal in these regions divided by the total noise (i.e. every
illuminated pixel is given equal weighting). This will allow one to monitor whether the signal-to-
noise in the flatfield meets the required specification, and adjust the number of co-adds (NDIT)
appropriately.
(Stored in the primary headers of all created output frames)

QC GAP MEAN, QC GAP SDV, QC GAP MAXDEV
QC SLIT MEAN, QC SLIT SDV, QC SLIT MAXDEV
For all detected edges the width of gaps and slitlets are determined using the fitted polynomial
functions. Deviant values are rejected. Then the mean, standard deviation and maximum deviation
(in units of standard deviation) are calculated and Y will be compared to nominal values stored in
external files (see Section 4 lower table and Section 4.3 for the data format), which will be
determined during testing and updated during commissioning. This will yield two sets of numbers
which ideally would have a small scatter about zero.
These 6 parameters are sufficient to monitor changes in spectral curvature solution for each of the
detectors and bandpasses.
(Stored in each detector header of all created output frames)

5.1.3 Wavelength Calibration

QC ARC AR EFF,
QC ARC NE EFF
The main concern here is whether the brightness of the argon and neon arc lamps has changed,
and so a single value for each lamp suffices for all detectors together. They are defined as the total
counts of several specified lines, divided by the exposure time, for each bandpass.
(Stored in the primary header)

QC ARC SAT NCOUNTS
This parameter tracks how many of the 12 million pixels (in all three detectors) are saturated in
the arc frame, for each bandpass. It allows one to set the optimal exposure time (DIT). A pixel is

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

40 of 174

flagged as saturated if its value is above some defined limit in at least two of the individual ON
frames used to generate the arc frame.
(Stored in the primary header)

QC ARC AR SPECRES, QC ARC AR ERR SPECRES,
QC ARC NE SPECRES, QC ARC NE ERR SPECRES
This monitors the spectral resolution and its errors of each grating for both the argon and neon
lamp. The FWHM of a specified arc line is measured for each bandpass and each detector.
(Stored in each detector header)

QC ARC DISP0 MEAN, QC ARC DISP0 SDV, QC ARC DISP0 MAXDEV,
QC ARC DISP1 MEAN, QC ARC DISP1 SDV, QC ARC DISP1 MAXDEV,
QC ARC DISP2 MEAN, QC ARC DISP2 SDV, QC ARC DISP2 MAXDEV
For each slitlet, a set of coefficients relating the pixel position on the detector to its wavelength is
determined. The constant (zeroth order), first order, and second order coefficients in Y will be
compared to nominal values stored in external files (see Section 4 lower table and Section 4.3 for
the data format), which will be determined during testing and updated during commissioning.
This will yield three sets of numbers which ideally would have a small scatter about zero.
These 9 parameters are sufficient to monitor changes in dispersion solution for each of the
detectors and bandpasses.
(Stored in each detector header)

QC ARC MAX DIFF, QC ARC MAX DIFF ID,
QC ARC MAX SDV, QC ARC MAX SDV ID,
QC ARC MEAN DIFF,
QC ARC MEAN SDV
Once the wavelength calibration look-up table has been generated, the arc frame is reconstructed
into a cube. Several prominent arc lines will be used to check the quality of the wavelength
calibration. For each IFU the difference between the wavelength of the emission line (across all
spaxels) and its true wavelength will be measured. The maximum difference, and the
corresponding IFU identity will be written as QC parameters. Similarly, the standard deviation of
the wavelengths in each spaxel will be calculated. The maximum value and the identity of the
corresponding IFU will be written to a second pair of QC parameters.
These 4 parameters are sufficient to monitor the quality of the dispersion solution for each of the
detectors and bandpasses. Similarly, the mean difference and the mean standard deviation are
calculated.
(Stored in each detector header)

5.1.4 Illumination Correction

QC SPAT UNIF
This parameter is defined as the RMS of all 14!14 spatial pixels in all the illumination correction
images corresponding to the 24 IFUs. It is a simple measure of how uniform the Master Flat is,
for each bandpass. It is also sensitive to differences in throughput (e.g. due to vignetting) both
between IFUs, and within any individual IFU.
(Stored in the primary header of the created output frame)

QC SPAT MAX DEV,
QC SPAT MAX DEV ID

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

41 of 174

For these parameters, the mean of the illumination correction is calculated for each of the IFUs in
each bandpass. The IFU that deviates most from unity is flagged, as is the amount by which it
deviates.
(Stored in the primary header of the created output frame)

QC SPAT MAX NONUNIF,
QC SPAT MAX NONUNIF ID
For these parameters, the standard deviation of the illumination correction is calculated for each
of the IFUs in each bandpass. The IFU with the largest standard deviation is flagged, and the
standard deviation itself is also recorded.
(Stored in the primary header of the created output frame)

5.1.5 Standard Star Observations

QC ZPOINT
This is defined as the mean zeropoint of all standard stars observed in various IFUs for a single
pointing, and for which a magnitude is given (although the number of stars may typically be 1). It
is different for each bandpass.
(Stored in each detector header of telluric output frame)

QC THRUPUT, QC THRUPUT MEAN, QC THRUPUT SDV
This is equivalent to the zeropoint, but in a slightly different form. The throughput will be
calculated whenever the zeropoint is calculated. It will be given as the mean (and standard
deviation) of the throughput based on all standard stars observed in various IFUs for a single
pointing – as long as a magnitude and spectral type is given. The number of photons detected (i.e.
counts ! gain) will be compared to the number of photons expected from the star, taking into
account standard atmospheric extinction. The ratio of these numbers is the throughput from the
top of the telescope to the detector, including the detector quantum efficiency.
(QC THROUGHPUT is stored in each detector header of telluric output frame,
QC THROUGHPUT MEAN and QC THROUGHPUT SDV are stored in the primary header of
telluric output frame)

QC SPAT RES
This is defined as the mean FWHM resolution of all standard stars observed in a single pointing.
Although the PSF may be slightly elliptical, the FWHM along the two axes are averaged to yield
a single measurement.
(Stored in each detector header of PSF output frame)

QC STD TRACE
This QC1 parameter has been introduced to verify the spectral curvature solution by checking
whether the trace of a standard star is straight in the reconstructed cube. Note that in the near
infrared, differential atmospheric refraction is small and will have little impact on the trace. This
parameter measures the standard deviation of the measurements of the positions of the standard
star in each spectral slice. This will depend on the bandpass used.
(Stored in each detector header of PSF output frame)

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

42 of 174

PART II: DRS RECIPE REFERENCE
6 Preliminaries
For the better understanding of the collaboration of the recipes among each other, the format of
frames and cubes are explained shortly here. A detailed description of data formats produced by
all recipes can be found in Sect. 4. All calibration and science recipes receive raw or processed
frames as input containing data referring to a complete detector array. While processing, this
format can change in the way that a frame will refer to a single IFU. In this case the recipe iterates
over all frames of all IFUs in order to process all data supplied by the detectors. Detector frames
will be split up into IFU frames, when a cube has to be reconstructed or created. Cubes refer
always to IFUs. Reciprocally IFU frames can be combined to a detector frame again.

Data Types

All generated and saved image and cube frames are of type float. Vector frames and scalar values
are of type double.

Adressing of IFUs and detectors

When a specific IFU or detector has to be defined in a recipe, an integer has to be supplied to the
recipe. Numbering starts always at 1 and ends at 24 for IFUs and at 3 for detectors.

Invalid IFUs

Since not all IFUs need to be active when doing an exposure, some sections of a RAW frame can
contain invalid data. The inactive IFUs are marked in the primary header with ESO OCS ARMi
NOTUSED (i=1 to 24).
During reconstruction the detector frame is split up and rearranged into a cube. Invalid IFUs will
just contain the extension header and no data (NAXIS=0). The keywords specific to arms are
propagated into the respective extension header.

QC Parameters

The QC parameters generated by the recipes are listed in Appendix B.

6.1 Standard workflow
A standard workflow to setup a calibration pipeline would look like:

$ esorex kmo_dark dark.sof
$ esorex kmo_flat flat.sof
$ esorex kmo_wave_cal arc.sof
$ esorex kmo_illumination --method="swNN" illumination.sof
$ esorex kmo_std_star --startype="G2V" --magnitude=8 std_star.sof
$ esorex kmo_sci_red sci_red.sof

Reconstructing a data cube from a detector image can already be performed after having executed
kmo_wave_cal:

$ esorex kmo_reconstruct --method="swNN" reconstruct_science.sof

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

43 of 174

6.2 Generating Test Data
Executing the built-in tests of the pipeline generates automatically valid and invalid test data for
the various recipes. Valid data has a prefix “v_” and invalid data has a prefix “i_” (stored in the
subfolders in kmosp/recipes/tests/test_data).

Test data is also generated for the calibration pipeline (kmosp/recipes/tests/test_data/pipeline). It
consists of simulated K-band data. The pipeline will also be executed during the tests and the
products are saved to disk (kmosp/recipes/tests).

To run the tests open a terminal and execute make check in kmosp/recipes.

6.3 Predefined wavelength ranges
By default the following wavelength ranges are used to reconstruct detector images into cubes:

H-band: 1.425 - 1.867 um
HK-band: 1.460 - 2.410 um
IZ-band: 0.780 - 1.090 um
K-band: 1.925 - 2.500 um
YJ-band: 1.000 - 1.359 um

These values can be changed using the parameters b_end and b_start in the recipes
kmo_reconstruct, kmo_illumination, kmo_sci_red and kmo_std_star.

6.4 Lookup table (LUT) for reconstruction
Once the calibration frames XCAL, YCAL and LCAL have been created with kmo_flat and
kmo_wave_cal, any detector image can be reconstructed. As long as the calibration frames don’t
change, every detector image will be reconstructed exactly the same way. To speed up the
interpolation during reconstruction, the generated LUT will be saved to disk by default. In each
subsequent reconstruction step this LUT can be reused and hasn’t to be recalculated therefore.
The LUT is saved as binary file and is not editable. It will neither be declared as ESO DFS
product since this is an intermediate output.
When a detector image to reconstruct contains only a few valid IFUs, the LUT is only calculated
and stored for these IFUs. In a later run the LUT can be updated when other IFUs are active.

A saved LUT can only be reused when following parameters match

• filters, gratings and rotation offset
Every LUT is specific to filters, gratings and rotation offset. Therefore the LUT gets the
same filename extension like other calibration products, e.g. LUT_HHH_HHH_0.fits

• reconstruction method, spatial and spectral ranges
These parameters are stored in the LUT and are checked before eventually applying it.

• timestamp
A timestamp is also added to the LUT to assert that the LUT is newer than the above-
mentioned calibration frames. If any of the provided calibration frames is newer than the
LUT, then the LUT will be recalculated.

The LUT will be erased, recalculated and saved again when any of these parameters don’t match.

There are different modes to influence the behaviour of the usage of the LUT.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

44 of 174

• NONE
The initial LUT is neither stored to disk nor in memory.
This method uses CPU resources only and is therefore the slowest method.
Any possibly existing LUT on disk will be ignored.

• MEMORY
The initial LUT isn’t stored to disk but is kept in memory as long a recipe is executed.
This method uses system memory resources.
Any possibly existing LUT on disk will be ignored.

• FILE
The initial LUT will be calculated and directly be saved to disk.
This method uses file system resources.
Any possibly existing LUT on disk will be examined for usability.

• BOTH
The initial LUT will be kept in memory as long a recipe is executed and saved to disk.
This method uses system memory and file system resources.
Any possibly existing LUT on disk will be examined for usability.

The default is LUT_MODE_FILE. The behavior can be changed in defining an environment
variable called KMCLIPM_PRIV_RECONSTRUCT_LUT_MODE with any of the the values
declared above.

7 Recipes
The KMOS data processing recipes can be divided into following four categories:

! Calibration
Recipes, which directly produce either calibration frames needed for science reductions or
for QC1 parameters.

! Science reduction
Recipes which perform science or acquisition reductions (which are largely built from the
tools described below)

! Basic Tools
Functionally simple recipes, which can be applied in a straightforward fashion. These
recipes are used internally as well for the calibration and science reduction recipes.

The interactions between the calibration and science reduction recipes are displayed as an
association map in Figure 18.

It is worth noting that only the high level functions are described here, and the low level such as
basic arithmetic and file manipulation functions, are implied.

In Section 7.1 the calibration and science processing recipes are ordered following the workflow
of the pipeline. In the following Sections the recipes are ordered alphabetically.

Reference Structure

For each recipe following information is provided:
! Functional Description

A short and more detailed description of the recipe is given.
! Flow Chart

A graphical flow chart and a corresponding description are provided. The stylistic
conventions used in the subsequent flowcharts are as follows:

o Inputs of single values like float, int etc. external to the recipe data flow are
indicated in the flowchart by right filled triangles (!).

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

45 of 174

o Inputs of cubes, frames or vectors are indicated by arrows (").
o Output of quality control parameters is coloured blue.
o Data-cubes, -frames or –vectors are displayed with bold typeface.
o The data flow goes from top to bottom. The down arrows can be split by

conditionnal statements (diamond) or when one single output triggers several DRL
functions.

! Input Frames
The DO categories of the frames needed to run the recipe and the required KMOS Fits
Type.

! Fits Header Keywords
Keywords needed in the primary and subsequent headers of the input files.

! Configuration Parameters
Description of all possible parameters with applicable data formats and allowed values.
Where appropriate they are divided into basic and Advanced parameters.

! Output Frames
Created output files with their DO category and KMOS Fits Type.

! Examples
How one would call the recipe with Esorex. If input is a single fits-file with no category-
keyword, it can simply be appended to the recipe-name. If input consists of a file with
category-keyword or of multiple files, they have to be written in a so-called sof-file (set of
frames). These are pseudo code examples.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

46 of 174

Figure 18: Association map for KMOS. The calibration and science recipes are listed, and the
interactions between them indicated by the filled circles.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

47 of 174

7.1 Calibration & Science Reduction

7.1.1 kmo_dark:

Master Dark Frames

Recipe name used in recipe/function uses recipe/function
kmo_dark - kmclipm_combine_frames

Create master dark frame & bad pixel mask (for monitoring detector health) and derive mean dark
current.

7.1.1.1 Description
This recipe calculates the master dark frame.
It is recommended to provide three or more dark exposures to produce a reasonable master with
associated noise. See section 8.2 for information on combine less than three frames.

Basic parameters:
--pos_bad_pix_rej
--neg_bad_pix_rej
Bad pixels above and below defined positive/negative threshold levels will be flagged and output
to the BADPIX_DARK frame (which will go into the kmo_flat recipe). The number of bad pixels
is returned as a QC1 parameter. The two parameters can be used to change these thresholds.

--cmethod
Following methods of frame combination are available:

! ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2)

! median
At each pixel position the median is calculated.

! average
At each pixel position the average is calculated.

! sum
At each pixel position the sum is calculated.

! min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

Advanced parameters:
--cpos_rej
--cneg_rej
--citer

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

48 of 174

see --cmethod = ”ksigma”

--cmax
--cmin
see --cmethod = “min_max”

7.1.1.2 Flow Chart

Figure 19: Flow chart of the recipe kmo_dark

The processing steps are:

1. From a series of dark exposures a dark frame (mean) and a noise map (std err) are
calculated using pixel rejection.

2. Then bad pixels above and below defined positive/negative threshold levels will be
flagged and output to the temporary bad pixel mask (which will go into the kmo_flat
recipe). The number of bad pixels is returned as QC1 parameter.

3. Bias, readnoise and the dark current quality parameters will be calculated (see section
5.1.1 for comprehensive explanations on QC1 parameters).

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

49 of 174

7.1.1.3 Input Frames
KMOS type DO category Amount Comments
RAW DARK ! 1 (! 3

recommended)
dark exposures

7.1.1.4 Fits Header Keywords
Primary Header

Keyword Type Value Comments
NDIT int any
EXPTIME double any

Sub Headers

Keyword Type Value Comments
EXPTIME double any

7.1.1.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
pos_bad_pix_rej,
neg_bad_pix_rej

double pos_bad_pix_rej ! 0,
neg_bad_pix_rej ! 0

50.0
50.0

The positive and negative rejec-
tion threshold for bad pixels.
(optional)

cmethod string “ksigma”, “average”,
“min_max”, “sum”,
“median”

“ksigma” The averaging method to apply
(optional)

Advanced parameters

Name Type valid values Default Comments
cpos_rej
cneg_rej

double cpos_rej ! 0,
cneg_rej ! 0

3.0
3.0

The positive and negative rejec-
tion thresholds for bad pixels
(optional, applies only when
--cmethod = “ksigma”)

citer int citer ! 1 3 The number of iterations for kap-
pa-sigma-clipping.
(optional, applies only iwhen
--cmethod = “ksigma”)

cmax
cmin

int cmax ! 0
cmin ! 0

1
1

The number of maximum and
minimum pixel values to clip
with min/max-clipping
(optional, applies only when
--cmethod = “min_max”)

7.1.1.6 Output Frames
KMOS type DO Category Comments
F2D MASTER_DARK Calculated master dark frames

(with included noise frames)
F2D BADPIXEL_DARK Associated badpixel frames

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

50 of 174

7.1.1.7 Examples
$ esorex kmo_dark –pos_bad_pix_rej=2.1 dark.sof

withdark.sof containing:
dark_1.fits DARK
dark_2.fits DARK
dark_3.fits DARK

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

51 of 174

7.1.2 kmo_flat:
Master Flat Field

Recipe name used in recipe/function uses recipe/function
kmo_flat - kmclipm_combine_frames

Create master flatfield frame and badpixel map to be used during science reduction.

7.1.2.1 Description
This recipe creates the master flat field and calibration frames needed for spatial calibration for all
three detectors. It must be called after the kmo_dark-recipe, which generates a bad pixel mask
(badpixel_dark.fits). The bad pixel mask will be updated in this recipe (goes into
badpixel_flat.fits). As input at least 3 dark frames, 3 frames with the flat lamp on are
recommended. Additionally a badpixel mask from kmo_dark is required.

The badpixel mask contains 0 for bad pixels and 1 for good ones.

The structure of the resulting xcal and ycal frames is quite complex since the arrangement of the
IFUs isn't just linear on the detector. Basically the integer part of the calibration data shows the
offset of each pixels centre in mas (milli arcsec) from the field centre. The viewing of an IFU is
2800mas (14pix*0.2arcsec/pix). So the values in these two frames will vary between +/-1500
(One would expect 1400, but since the slitlets aren't expected to be exactly vertical, the values can
even go up to around 1500). Additionally in the calibration data in y-direction the decimal part of
the data designates the IFU to which the slitlet corresponds to (for each detector from 1 to 8).
Because of the irregular arrangement of the IFUs not all x-direction calibration data is found in
xcal and similarly not all y-direction calibration data is located in ycal. For certain IFUs they are
switched and/or flipped in x- or y-direction:
For IFUs 1,2,3,4,13,14,15,16: x- and y- data is switched
For IFUs 17,18,19,20: y-data is flipped
For IFUs 21,22,23,24: x-data is flipped
For IFUs 5,6,7,8,9,10,11,12: x- and y- data is switched and x- and y- data is flipped

Advanced features:
To create the badpixel mask the edges of all slitlets are fitted to a polynomial. Since it can happen
that some of these fits (3 detectors * 8 IFUs * 14slitlets * 2 edges (left and right edge of slitlet)=
672 edges) fail, the fit parameters are themselves fitted again to detect any outliers. By default the
parameters of all left and all right edges are grouped individually and then fitted using chebyshev
polynomials. The advantage of a chebyshev polynomial is, that it consists in fact of a series of
orthogonal polynomials. This implies that the parameters of the polynomials are independent.
This fact predestines the use of chebyshev polynomials for our case. So each individual parameter
can be examined independently. The reason why the left and right edges are fitted individually is
that there is a systematic pattern specific to these groups. The reason for this pattern is probably to
be found in the optical path the light is traversing.
The behaviour of this fitting step can be influenced via environment parameters:

• KF_ALLPARS (default: 1)
When set to 1 all coefficients of the polynomial of an edge are to be corrected, also when
just one of these coefficients is an outlier. When set to 0 only the outlier is to b e
corrected.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

52 of 174

• KF_CH (default: 1)
When set to 1 chebyshev polynomials are used to fit the fitted parameters. When set to 0
normal polynomials are used.

• KF_SIDES (default: 2)
This variable can either be set to 1 or 2. When set to 2 the left and right edges are
examined individually. When set to 1 all edges are examined as one group.

• KF_FACTOR (default: 4)
This factor defines the threshold factor. All parameters deviating KF_FACTOR*stddev
are to be corrected

Basic parameters:
--surrounding_pixels
The amount of bad pixels to surround a specific pixel, to let it be marked bad as well.

--cmethod
Following methods of frame combination are available:

! ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

! median
At each pixel position the median is calculated.

! average
At each pixel position the average is calculated.

! sum
At each pixel position the sum is calculated.

! min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

Advanced parameters:
--cpos_rej
--cneg_rej
--citer
see --cmethod = “ksigma”

--cmax
--cmin

see --cmethod = “min_max”

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

53 of 174

7.1.2.2 Flow Chart

Figure 20: Flow chart of the recipe kmo_flat

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

54 of 174

The processing steps are:
1. The number of saturated pixels (>50’000) in the raw lamp-on frames is counted.
2. The mean frame and associated noise map (std err) from the lamp-on frames are

calculated using pixel rejection.
3. Similarly, the mean frame and associated noise map from lamp-off frames will be

computed.
4. The two mean frames are subtracted. The noise frames are combined.
5. To flag bad pixels preliminarily, the subtracted data is sorted. The lower 5% and upper

10% are cut off and then the position with the steepest slope is searched. 10% of the value
at this position is taken as threshold level. Pixels below will be flagged as bad pixels.
Additionally all pixels surrounded by at least 6 bad pixels are also flagged as bad. This
bad pixel mask will be combined with the temporary bad pixel mask from kmo_dark
recipe resulting into a preliminary bad pixel mask. (Preliminary because the slitlets are to
wide at present, but the exact edges are calculated with the fitted edge information
afterwards)

6. In the middle of the lower half und upper half of the frame a line profile is taken and
analysed for eventually existing rotation, cut or missing slitlets. When the number of
slitlets present and their approximate position has been determined, along the y-axis every
9 pixels a gaussfit is done to get a better approximation of the edge. At a last step, a 3rd
order polynomial is fitted to the edge. Out of the parameters of the polynomial the QC
parameters QC GAP MEAN, QC GAP SDV, QC GAP MAXDEV, QC SLIT MEAN, QC
SLIT SDV, QC SLIT MAXDEV are calculated.

7. Now knowing the exact position and shape of the edge, the bad pixel mask is updated and
the spectral curvature calibration frames (LUTs), one in x- and one in y-direction, are
calculated. Furthermore an eventually existing spectral gradient will be normalised for
each slitlet separately. For this all values in the same row of a slitlet are averaged, then a
3rd order polynomial is fitted to the resulting data points. The polynomial is normalised
and the slitlet-data will be divided by it.

Now the data and noise frames are normalised as a whole to unity using the mean calculated
without bad pixels. Out of these operations we get the master flatfield frame, the noise map and
QC1 parameters indicating lamp efficiency and signal to noise.

7.1.2.3 Input Frames
KMOS type DO category Amount Comments
RAW FLAT_ON ! 1 (! 3

recommended)
Flatlamp-on frames

RAW FLAT_OFF ! 1 (! 3
recommended)

Flatlamp-off frames
(dark exposures)

B2D BADPIXEL_DARK 1 badpixel frame (from kmo_dark)

7.1.2.4 Fits Header Keywords
Primary Header

Keyword Type Value Comments
DIT double any integration time (equals EXPTIME)
NDIT int 1
ESO DET READ CURNAME string Double,

Fowler,
detector readout mode

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

55 of 174

Sub Headers

None

7.1.2.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
surrounding_pixels int 8 !surrounding_pixels ! 0 5 The amount of bad pixels

to surround a specific
pixel, to let it be marked
bad as well
(optional)

cmethod string “ksigma”
“min_max”
“average”
“median”
“sum”

“ksigma” The averaging method to
apply
(optional)

Advanced parameters

Name Type valid values Default Comments
cpos_rej
cneg_rej

double cpos_rej ! 0,
cneg_rej ! 0

3.0
3.0

The positive and negative
rejection thresholds for
bad pixels
(optional, applies only
when --cmethod =
“ksigma”)

citer int citer ! 1 3 The number of iterations
for kappa-sigma-clipping.
(optional, applies only
when --cmethod =
“ksigma”)

cmax
cmin

int cmax ! 0
cmin ! 0

1
1

The number of maximum
and minimum pixel values
to clip with min/max-
clipping
(optional, applies only
when --cmethod =
“min_max”)

Nondest
ESO INS LAMP1 ST bool FALSE Arc lamp must be off
ESO INS LAMP2 ST bool FALSE Arc lamp must be off
ESO INS LAMP3 ST bool TRUE FLAT_ON: Flat lamp must be on

FLAT_OFF: must be off (can be on if
ESO INS FILTx ID is ‘Block’)

ESO INS LAMP4 ST bool TRUE Either LAMP3 or LAMP4 must be on
(LAMP4 is a spare)

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

56 of 174

7.1.2.6 Output Frames
KMOS type DO Category Comments
F2D MASTER_FLAT Normalised flat field

(with included noise frames)
F2D BADPIXEL_FLAT Updated bad pixel mask
F2D XCAL Calibration frame 1 (spatial dimension)
F2D YCAL Calibration frame 2 (spatial dimension)
F2L FLAT_EDGE Intermediate product needed for

kmo_wave_cal. It contains the parameters
of the fitted edges of all IFUs of all detectors.

7.1.2.7 Examples
$ esorex kmo_flat flat.sof

with flat.sof containing:
flat_on_1.fits FLAT_ON
flat_on_2.fits FLAT_ON
flat_on_3.fits FLAT_ON
flat_off_1.fits FLAT_OFF
flat_off_2.fits FLAT_OFF
flat_off_3.fits FLAT_OFF
badpixel_dark.fits BADPIXEL_DARK

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

57 of 174

7.1.3 kmo_wave_cal:
Wavelength Calibration

Recipe name used in recipe/function uses recipe/function
kmo_wave_cal - -

Create a calibration frame encoding the spectral position (i.e. wavelength) of each pixel on the
detector.

7.1.3.1 Description
This recipe creates the wavelength calibration frame needed for all three detectors. It must be
called after the kmo_flat recipe, which generates the two spatial calibration frames needed in this
recipe. As input a lamp-on frame, a lamp-off frame, the flat badpixel frame, the spatial calibration
frames and the list with the reference arclines are required.
An additional output frame is the resampled image of the reconstructed arc frame. All slitlets of
all IFUs are aligned one next to the other. This frame serves for quality control. One can
immediately see if the calibration was successful.
The lists of reference arclines are supposed to contain the lines for both available calibration arc-
lamps, i.e. Argon and Neon. The list is supposed to be a F2L KMOS FITS file with three
columns:

1. Reference wavelength
2. Relative strength
3. String either containing “Ar” or “Ne”

The recipe extracts, based on the header keywords, either the applying argon and/or neon
emission lines. Below are the plots of the emission lines for both argon and neon. The marked
lines are the ones used for wavelength calibration.

Basic parameters:
--order
The polynomial order to use for the fit of the wavelength solution. 0: (default) The appropriate
order is choosen automatically depending on the waveband. Otherwise an order of 6 is
recommended, except for IZ-band, there order 4 should be used.

Advanced parameters:
--b_samples
The number of samples in spectral direction for the resampled image. Ideally this number should
be about the same size as the detector.

--b_start
--b_end
Used to define manually the start and end wavelength for the resampled image. By default the
internally defined values are used (see Section 6.3).

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

58 of 174

Figure 21: H-band argon and neon emission lines

Figure 22 HK-band argon and neon emission lines

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

59 of 174

Figure 23 IZ-band argon and neon emission lines

Figure 24 K-band argon and neon emission lines

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

60 of 174

Figure 25 YJ-band argon and neon emission lines

The lines used to determine the quality of wavelength calibration are as follows:

Band Argon Neon
H 1.67446 um 1.71666 um
HK 1.79196 um 1.80882 um
IZ 0.922703 um 0.85676 um
K 2.15401 um 2.25365 um
YJ 1.12430 um 1.17700 um

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

61 of 174

7.1.3.2 Flow Chart

Figure 26: Flow chart of the recipe kmo_wave_cal

The processing steps are:

1. A raw lamp-on and a raw lamp-off frame taken with the internal arc lamp are subtracted.
2. The frame is split up into its slitlets (14 per IFU) using the flatfield badpixel mask. The

following processing steps are applied to every slitlet. Bad pixels are ignored.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

62 of 174

3. The " positions of the arc lines will be measured and matched to a list of nominal arclines
defined in a external file. This results in a first estimate where the line lie in the slitlet.

4. Then the exact positions of all lines across the slitlet width are fitted using a gauss fit.
5. A polynomial is fit to each line across the slitlet in order to extrapolate inexistent values

resulting from rotation of the slitlets.
6. A polynomial is fitted along the wavelength direction to get the wavelength calibration

data. The product of these operations so far is the 2D wavelength calibration frame (LUT).
7. As last step the provided arc frame will be reconstructed as cube and be decomposed into

its slitlets which are saved into a frame with one slitlet beside the other. This way the
quality of the wavelength calibration file can be determined quickly svisually.

All fits will be iterated twice, rejecting pixels which deviate by more than a few standard
deviations.
The quality of the wavelength calibration is assessed and recorded in several QC1 parameters.

7.1.3.3 Input Frames
KMOS type DO category Amount Comments
RAW ARC_ON 1 Arclamp-on exposure
RAW ARC_OFF 1 Arclamp-off exposure
F2D MASTER_FLAT 1 Master flat frame
B2D BADPIXEL_FLAT 1 Badpixel frame
F2D XCAL 1 Calibration frame 1
F2D YCAL 1 Calibration frame 2
F1L ARC_LIST 1 List of reference arc lines, either

for Argon or Neon or both
combined. The first column has to
contain the wavelengths and the
second one the intensities

F2L FLAT_EDGE 1 Frame containing the fitted edges
of all IFUs.

F2L REF_LINES 1 Reference line table
F2L WAVE_BAND 1 Table with start-/end-values of

wavelengthrange

7.1.3.4 Fits Header Keywords
Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT int 1
EXPTIME double any

Sub Headers

Keyword Type Value
EXPTIME double any all frames

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

63 of 174

7.1.3.5 Configuration Parameters
Basic parameters:

Name Type valid values Default Comments
order int order ! 0 0 The polynomial order to use for the fit

of the wavelength solution. 0: (default)
The appropriate order is choosen
automatically depending on the
waveband. Otherwise an order of 6 is
recommended, except for IZ-band, there
order 4 should be used.

Options for pipeline developers only:

Name Type valid values Default Comments
disp double disp > 0.0

-1.0 The expected spectral dispersion. By
default the correct value is gained via
the header keywords regarding filter
configuration. This parameter is for
testing the recipe with simulated data
only.

flip bool TRUE,
FALSE

TRUE For some test data sets the wavelength is
ascending from bottom to top, so this
parameter has to be set to FALSE

7.1.3.6 Output Frames
KMOS type DO Category Comments
F2D LCAL Calibration frame 3 (spectral dimension)
F2D DET_IMG_WAVE Resampled image of the reconstructed arc

frame. All slitlets of all IFUs are aligned
one next to the other.

Additional Output

All recipes doing reconstruction of cubes create a LUT which by default is saved to disk. For
further information see Sec. 6.4.

7.1.3.7 Examples
$ esorex kmo_wave_cal arc.sof

with arc.sof containing:
arc_on.fits ARC_ON
arc_off.fits ARC_OFF
arclist.fits ARC_LIST
master_flat.fits MASTER_FLAT
badpixel_flat.fits BADPIXEL_FLAT
xcal.fits XCAL
ycal.fits YCAL
flat_edge.fits FLAT_EDGE
ref_lines.fits REF_LINES

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

64 of 174

7.1.4 kmo_illumination:
Illumination Correction

Recipe name used in recipe/function uses recipe/function
kmo_illumination - kmo_make_image

kmo_reconstruct

Creates a calibration file to correct spatial non-uniformity of flatfield.

7.1.4.1 Description
This recipe creates the spatial non-uniformity calibration frame needed for all three detectors. It
must be called after the kmo_wave_cal-recipe, which generates the spectral calibration frame
needed in this recipe. As input at leaast a sky, a master dark, a master flat and the spatial and
spectral calibration frames are required.

Basic parameters:
--imethod
The interpolation method used for reconstruction.

--range
The spectral range [um] to combine when collapsing the reconstructed cubes.

Advanced parameters:
--neighborhoodRange
Defines the range to search for neighbors during reconstruction

--b_samples
The number of samples in spectral direction for the reconstructed cube. Ideally this number
should be greater than 2048, the detector size.

--b_start
--b_end
Used to define manually the start and end wavelength for the reconstructed cube. By default the
internally defined values are used (see Section 6.3).

--cmethod
Following methods of frame combination are available:

! ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

! median
At each pixel position the median is calculated.

! average
At each pixel position the average is calculated.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

65 of 174

! sum
At each pixel position the sum is calculated.

! min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

--cpos_rej
--cneg_rej
--citer
see --cmethod = “ksigma”

--cmax
--cmin

see --cmethod = “min_max”

7.1.4.2 Flow Chart

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

66 of 174

Figure 27: Flow chart of the recipe kmo_illumination

The processing steps are:

1. The sky frames are averaged using pixel rejection with a large sigma for clipping.
2. An appropriate dark frame will be subtracted. The result is divided by the master flat field.
3. The frame is split up into frames referring to single IFUs.
4. Now the cubes are reconstructed (one for each IFU) using a bad pixel mask (from

kmo_flat), a spectral curvature calibration frame (from kmo_flat) and a wavelength
calibration frame (from kmo_wave_cal) and subsequently collapsed to spatial images.

5. The images will be normalized as a group. (i.e. so that the mean of all frames is unity).
Furthermore several QC1 parameters are calculated, see section 5.1.4 for details.

7.1.4.3 Input Frames
KMOS type DO category Amount Comments
F2D FLAT_SKY ! 1 Flat sky exposure
F2D MASTER_DARK 1 Master dark frame
F2D MASTER_FLAT 1 Master flat frame
F2D XCAL 1 Spatial calibration file
F2D YCAL 1 Spatial calibration file
F2D LCAL 1 Spectralcalibration file
F2L WAVE_BAND 1 Table with start-/end-values of

wavelengthrange

7.1.4.4 Fits Header Keywords
Primary Header

None

Sub Headers

None

7.1.4.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
imethod string “NN”

“lwNN”
“swNN”
“MS”,
“CS”

“NN” Interpolation method for
reconstruction:
NN: Nearest Neighbor
lwNN: linear weighted NN
swNN: square weighted NN
MS: Modified Shepard’s
method
CS: Cubic spline
(optional)

range string “x1_start,x1_end;
x2_start,x2_end”

“” The spectral ranges in
microns to combine when
collapsing the reconstructed
cubes spectrally

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

67 of 174

Advanced parameters

Name Type valid values Default Comments
neighborhoodRange double ! 1 1.001 Defines the range to search

for neighbors during
reconstruction

b_samples int b_samples > 2 2460 Nr. of samples of
reconstructed data for the
wavelength

b_start
b_end

double b_start > 0.0
b_end > b_start

-1.0 Start and end wavelength.
The defaults of -1.0 instruct
to use the internally defined
range (see Section 6.3)

cmethod string “ksigma”
“min_max”
“average”
“median”
“sum”

“ksigma” The averaging method to
apply
(optional)

cpos_rej
cneg_rej

double cpos_rej ! 0,
cneg_rej ! 0

3.0
3.0

The positive and negative
rejection thresholds for bad
pixels
(optional, applies only
when --cmethod =
“ksigma”)

citer int citer ! 1 3 The number of iterations for
kappa-sigma-clipping.
(optional, applies only
when --cmethod =
“ksigma”)

cmax
cmin

int cmax ! 0
cmin ! 0

1
1

The number of maximum
and minimum pixel values
to clip with min/max-
clipping
(optional, applies only
when --cmethod =
“min_max”)

7.1.4.6 Output Frames
KMOS type DO Category Comments
F2I ILLUM_CORR The spatial non-uniformity calibration

frame

Additional Output

All recipes doing reconstruction of cubes create a LUT which by default is saved to disk. For
further information see Sec. 6.4.

7.1.4.7 Examples
$ esorex kmo_illumination illum.sof

with illum.sof containing:

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

68 of 174

sky1.fits FLAT_SKY
sky2.fits FLAT_SKY
sky3.fits FLAT_SKY
master_dark.fits MASTER_DARK
master_flat.fits MASTER_FLAT
xcal.fits XCAL
ycal.fits YCAL
lcal.fits LCAL

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

69 of 174

7.1.5 kmo_std_star:
Telluric Standard Star

Recipe name used in recipe/function uses recipe/function
kmo_std_star - kmo_make_image

kmo_reconstruct_sci
kmo_extract_spec
kmo_fit_profile
kmo_arithmetic

Creates a spectrum for telluric correction and derives zeropoint for flux calibration. In addition,
this will estimate the spatial resolution (PSF).

7.1.5.1 Description
This recipe creates a telluric calibration frame and a PSF frame. It must be called after the
kmo_illumination-recipe.
Since there won’t be enough standard stars to observe for all IFUs in one exposure, one has to do
several exposures in a way that there is at least one standard star and one sky exposure in each
IFU. A internal data organiser will analyse the provided exposures and select the appropriate
frames as follows:

1. For each IFU the first standard star in the list of provided exposures is taken. All
subsequent standard star exposures for this IFU will be ignored

2. A corresponding sky exposure will be chosen which will be as close in time to the
standard star exposure as possible.

3. For any IFUs not containing a standard star and a sky exposure an empty frame will be
returned.

Basic parameters:
--startype
The star type of the observed object . This value applies to all objects examined in the input
frames. Examples would be “A3I”, “G3IV” or “K0I”. The first letter defines the star type, the
second letter the spectral class and the last letters the luminosity class.

--magnitude
The magnitude of the observed object..

--fmethod
The type of function that should be fitted spatially to the collapsed image. This fit is used to create
a mask to extract the spectrum of the object. Valid values are “gauss” and “moffat”.

--imethod
The interpolation method used for reconstruction.

--range
The spectral range [um] to combine when collapsing the reconstructed cubes.

Advanced parameters:
--neighborhoodRange
Defines the range to search for neighbors during reconstruction

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

70 of 174

--b_samples
The number of samples in spectral direction for the reconstructed cube. Ideally this number
should be greater than 2048, the detector size.

--b_start
--b_end
Used to define manually the start and end wavelength for the reconstructed cube. By default the
internally defined values are used (see Section 6.3).

--cmethod
Following methods of frame combination are available:

! ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

! median
At each pixel position the median is calculated.

! average
At each pixel position the average is calculated.

! sum
At each pixel position the sum is calculated.

! min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

--cpos_rej
--cneg_rej
--citer
see --cmethod = “ksigma”

--cmax
--cmin

see --cmethod = “min_max”

7.1.5.2 Flow Chart
The flowchart for this recipe is split up in two diagrams. To simplify the flowchart the internal
data organising workflow isn’t depicted. All steps apply to each active IFU individually. The
resulting PSF frames, telluric & error spectra of all processed IFUs are merged into the defined
output frames.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

71 of 174

Figure 28: Flow chart of the recipe kmo_std_star (Part 1)

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

72 of 174

Figure 29: Flow chart of the recipe kmo_std_star (Part 2)

The processing steps are:

1. From one or more raw object and sky frames the IFUs containing observed standard stars
are extracted.

2. The signal frame and the noise frame are reconstructed as cubes using a bad pixel mask
(from kmo_flat), two spectral curvature calibration frames (from kmo_flat) and a
wavelength calibration frame (from kmo_wave_cal). The corresponding IFU frames are
also extracted from these auxiliary inputs.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

73 of 174

3. The reconstructed cube is divided spatially by the spatial illumination correction frame.
4. To the data cube for each spatial slice a 2D-profile is fitted to obtain the position of the

object. The RMS of these values is saved as header keyword QC STD TRACE.
5. The signal cube is collapsed to a spatial image. This results into an image of the PSF of

the IFU.
6. From the signal and the noise cubes the signal and error spectra are extracted. As a mask,

the profile fit of the PSF image is used. This intermediate spectrum is saved as
STAR_SPEC.

7. Two cases are distinguished in the further processing in function of the spectral type of the
standard star observed:

a. OBAF stars
I. The temporary signal spectrum is divided by a model atmospheric

transmission.
II. Fit a Lorentzian function to stellar absorption line(s) and subtract.

III. Multiply the model atmospheric transmission back in.
This applies only in K-band. For other bands a warning is emitted.

b. G stars
I. Convolve the solar spectrum to the correct spectral resolution and divide it

out of the temporary signal spectrum.
8. Divide the result by a curve corresponding to the effective temperature of the star.
9. Normalising the spectrum (and also the error spectrum) yield the telluric correction and

the final error spectrum.
10. By dividing the temporary spectrum by the telluric correction and by providing the

magnitude of the star and the gain of the detector (in fits header) two QC1 parameters can
be calculated: the zeropoint and the throughput (mean and standard deviation).

Above steps are repeated for all IFUs containing a standard star and a sky frame in the input
data.

7.1.5.3 Input Frames
KMOS type DO category Amount Comments
RAW STD ! 2 Flat sky exposure
F2D ILLUM_CORR 1 Master dark frame
F2D MASTER_FLAT 1 Master flat frame
F2D XCAL 1 Spatial calibration file
F2D YCAL 1 Spatial calibration file
F2D LCAL 1 Spectralcalibration file
F1S SOLAR_SPEC 0,1 Solar spectrum (only for G

stars)
F1S ATMOS_MODEL 0,1 Atmospheric transmission

model (only for OBAF stars
in K-band)

F2L SPEC_TYPE_LOOKUP 0,1 Look up table of effective
stellar temperatures

F2L WAVE_BAND 1 Table with start-/end-values
of wavelengthrange

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

74 of 174

7.1.5.4 Fits Header Keywords
Primary Header

None

Sub Headers

None

7.1.5.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
startype string Star type:

O, B, A, F, G, K
Spectral class:
1 to 9 (K: only 0)
Luminosity class:
I to V (e.G. “G4VI”)

“” The spectral type of the star
(mandatory)

magnitude double ! 0.0 0.0 The magnitude of the star
(mandatory)

fmethod string “gauss” or ”moffat” “gauss” The 2D function to fit to the
collapsed cube

imethod string “NN”
“lwNN”
“swNN”
“MS”
“CS”

“NN” Interpolation method for
reconstruction:
NN: Nearest Neighbor
lwNN: linear weighted NN
swNN: square weighted NN
MS: Modified Shepard’s
method
CS: Cubic spline
(optional)

range string “x1_start,x1_end;
x2_start,x2_end”

“” The spectral ranges in
microns to combine when
collapsing the reconstructed
cubes spectrally

Advanced parameters

Name Type valid values Default Comments
neighborhoodRange double ! 1 1.001 Defines the range to search

for neighbors during
reconstruction

b_samples int b_samples > 2 2460 Nr. of samples of
reconstructed data for the
wavelength

b_start
b_end

double b_start > 0.0
b_end > b_start

-1.0 Start and end wavelength.
The defaults of -1.0 instruct
to use the internally defined
range (see Section 6.3)

cmethod string “ksigma” “ksigma” The averaging method to

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

75 of 174

“min_max”
“average”
“median”
“sum”

apply
(optional)

cpos_rej
cneg_rej

double cpos_rej ! 0,
cneg_rej ! 0

3.0
3.0

The positive and negative
rejection thresholds for bad
pixels
(optional, applies only
when --cmethod =
“ksigma”)

citer int citer ! 1 3 The number of iterations for
kappa-sigma-clipping.
(optional, applies only
when --cmethod =
“ksigma”)

cmax
cmin

int cmax ! 0
cmin ! 0

1
1

The number of maximum
and minimum pixel values
to clip with min/max-
clipping
(optional, applies only
when --cmethod =
“min_max”)

7.1.5.6 Output Frames
KMOS type DO Category Comments
F1I TELLURIC The normalised telluric spectrum
F1I STAR_SPEC The extracted star spectrum
F2I STD_IMAGE The standard star PSF

Additional Output

All recipes doing reconstruction of cubes create a LUT which by default is saved to disk. For
further information see Sec. 6.4.

7.1.5.7 Examples
$ esorex kmo_std_star std.sof

with std.sof containing:
obj1.fits STD
obj2.fits STD
obj13fits STD
sky1.fits STD
sky2.fits STD
master_flat.fits MASTER_FLAT
xcal.fits XCAL
ycal.fits YCAL
lcal.fits LCAL
illum.fits ILLUM_CORR
solar_h_2400.fits SOLAR_SPEC
atmos_k.fits ATMOS_MODEL

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

76 of 174

spec_type.fits SPEC_TYPE_LOOKUP

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

77 of 174

7.1.6 kmo_sci_red:
Processing for Science Data

Recipe name used in recipe/function uses recipe/function
kmo_sci_red - kmo_noise_map

kmo_reconstruct_sci
kmo_arithmetic
kmo_combine

Reconstruct and combine data frames dividing illumination and telluric correction.

7.1.6.1 Description
At least two data frames have to be provided since we need for each IFU pointing to an object
also a sky frame from the same IFU.
Every IFU containing an object will be reconstructed and divided by telluric and illumination
correction. By default these intermediate cubes are saved to disk. Frames just containing skies
won’t produce an output here, so the number of output frames can be smaller than the number of
input frames.
Then the reconstructed objects with the same object name are combined. These outputs are also
saved to disk, the number of created files depends on the number of reconstructed objects of
different name. If the user just wants to combine a certain object, the parameters --name or --
ifus can be used.
For exposures taken with the templates KMOS_spec_obs_mapping8 and
KMOS_spec_obs_mapping24 the recipe behaves a bit different: All active IFUs will be
combined, regardless of the object names.
This recipe must be called after the kmo_std_star-recipe.

Basic parameters:
--imethod
The interpolation method used for reconstruction.

--smethod
The interpolation method used for shifting.

Advanced parameters:
--flux
Specify if flux conservation should be applied.

Advanced reconstruction parameters:
--neighborhoodRange
Defines the range to search for neighbors during reconstruction

--b_samples
The number of samples in spectral direction for the reconstructed cube. Ideally this number
should be greater than 2048, the detector size.

--b_start
--b_end

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

78 of 174

Used to define manually the start and end wavelength for the reconstructed cube. By default the
internally defined values are used (see Section 6.3).

Advanced combining parameters:
--name
--ifus
Since an object can be present only once per exposure and since it can be located in different
IFUs for the existing exposures, there are two modes to identify the objects:

! Combine by object names (default)
In this case the object name must be provided via the --name parameter. The object
name will be searched for in all primary headers of all provided frames in the keyword
ESO OCS ARMx NAME.

! Combine by index (advanced)
In this case the --ifus parameter must be provided. The parameter must have the same
number of entries as frames are provided, e.g. \"3;1;24\" for 3 exposures. The index
doesn't reference the extension in the frame but the real index of the IFU as defined in the
EXTNAME keyword (e.g. 'IFU.3.DATA').

--method
There are following sources to get the shift parameters from:

! header (default)
The shifts are calculated according to the WCS information stored in the header of every
IFU. The output frame will get larger, except the object is at the exact same position for all
exposures. The size of the exposures can differ, but the orientation must be the same for
all exposures.

! none
The cubes are directly recombined, not shifting at all. The ouput frame will have the same
dimensions as the input cubes.
If the size differs a warning will be emitted and the cubes will be aligned to the lower left
corner. If the orientation differs a warning will be emitted, but the cubes are combined
anyway.

! center
The shifts are calculated using a centering algorithm. The cube will be collapsed and a 2D
profile will be fitted to it to identify the centre. With the parameter --fmethod the
function to fit can be provided. The size of the exposures can differ, but the orientation
must be the same for all exposures.

! user
Read the shifts from a user specified file. The path of the file must be provided using the --
filename parameter. For every exposure (except the first one) two shift values are
expected per line, they have to be separated with simple spaces. The values indicate pixel
shifts and are referenced to the first frame. The 1st value is the shift in x-direction to the
left, the 2nd the shift in y-direction upwards. The size of the exposures can differ, but the
orientation must be the same for all exposures.

--fmethod
see --method = “center”
The type of function that should be fitted spatially to the collapsed image. This fit is used to create
a mask to extract the spectrum of the object. Valid values are “gauss” and “moffat”.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

79 of 174

--filename
see --method = “user”

--cmethod
Following methods of frame combination are available:

! ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

! median
At each pixel position the median is calculated.

! average
At each pixel position the average is calculated.

! sum
At each pixel position the sum is calculated.

min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

--cpos_rej
--cneg_rej
--citer
see --cmethod = ”ksigma”

--cmax
--cmin
see --cmethod = “min_max”

--extrapolate
By default no extrapolation is applied. This means that the intermediate
reconstructed cubes will shrink at most one pixel, which is ok for templates
like KMOS_spec_obs_nodtosky or KMOS_spec_obs_freedither. When the cubes will be
arranged as a map, a grid is likely to occur between the IFUs. Therefore extra-
polation during the shifting process can be switched on in order to get IFUs of
original size. For frames taken with mapping templates, extrapolation is
switched on automatically.

7.1.6.2 Flow Chart
To simplify the flowchart the internal data organising workflow isn’t depicted. All steps apply
individually to each active IFU containing an object and a sky exposure.
The reduced data and noise cube is stored in a similar manner as the input frames.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

80 of 174

Figure 30: Flow chart of the recipe kmo_sci_red

The processing steps are:

1. The raw object is sky subtracted and reconstructed into a cube following the workflow
explained in section 8.3.

2. The resulting data and noise cubes are divided by the telluric spectrum each.
3. Both data and noise cubes are divided spatially by the illumination correction.
4. Above steps are repeated for each IFU containing an object.

7.1.6.3 Input Frames
KMOS type DO category Amount Comments
RAW SCIENCE $2 The science frames
F2D XCAL 1 Calibration frame 1

(from kmo_flat)
F2D YCAL 1 Calibration frame 2

(from kmo_flat)
F2D LCAL 1 Calibration frame

(from kmo_flat)
F2D MASTER_FLAT 1 (from kmo_flat)

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

81 of 174

F2I ILLUM_CORR 0,1 (from kmo_illumination)
F1I TELLURIC 0,1 (from kmo_std_star)
F2L WAVE_BAND 1 Table with start-/end-values

of wavelengthrange

7.1.6.4 Fits Header Keywords
Primary Header

None

Sub Headers

None

7.1.6.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
imethod string “NN”

“lwNN”
“swNN”
“MS”
“CS”

“CS” Interpolation method:
NN: Nearest Neighbor
lwNN: linear weighted NN
swNN: square weighted NN
CM: Modified Shephard
CS: cubic spline
(optional)

smethod string “NN”
“CS”

“CS” Interpolation method:
NN: Nearest Neighbor
CS: cubic spline
(optional)

Advanced parameters

Name Type valid values Default Comments
flux bool TRUE, FALSE TRUE Apply flux conservation
neighborhoodRange double ! 1 1.001 Defines the range to search

for neighbors
b_samples int b_samples > 2 2460 Nr. of samples of

reconstructed data for the
wavelength

b_start
b_end

double b_start > 0.0
b_end > b_start

-1.0 Start and end wavelength.
The defaults of -1.0 instruct
to use the internally defined
range (see Section 6.3)

outext bool TRUE, FALSE FALSE TRUE if OBS_ID keyword
should be appended to output
frame, FALSE otherwise

7.1.6.6 Output Frames
KMOS type DO Category Comments
F3I REDUCED_CUBE Reconstructed cube with noise

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

82 of 174

7.1.6.7 Examples
$ esorex kmo_sci_red reduce.sof

with reduce.sof containing:
obj1.fits SCIENCE
obj2.fits SCIENCE
obj3.fits SCIENCE
master_flat.fits FLAT
xcal.fits XCAL
ycal.fits YCAL
lcal.fits LCAL
illum.fits ILLUM_CORR
telluric.fits TELLURIC

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

83 of 174

7.2 Basic Tools

7.2.1 kmo_arithmetic:

Basic Arithmetic

Recipe name used in recipe/function uses recipe/function
kmo_arithmetic kmo_std_star

kmo_sci_red
kmo_rtd_image
kmo_bkg_sub
kmo_sky_tweak

-

Perform basic arithmetic on cubes.

7.2.1.1 Description
With this recipe simple arithmetic operations, like addition, subtraction, multiplication, divison
and raising to a power can be performed.
Since FITS files formatted as F1I, F2I and F3I can contain data (and eventually noise) of either
just one IFU or of all 24 IFUs, kmo_arithmetic behaves differently in these cases.
When the number of IFUs is the same for both operands, the first IFU of the first operand is
processed with the first IFU of the second operand.
When the second operand has only one IFU while the first operand has more IFUs, then the all the
IFUs of the first operand are processed individually which the IFU of the second operand.
If an operand contains noise and the other doesn't, the noise will not be processed.

Noise is only propagated if both operand contain noise extensions. If the second operator is a
scalar noise is also propagated, of course.

If two cubes are given as operands, they will be combined according to the given operator.If a
cube is given as first operand and an image as second, then it operates on each slice of the cube;
similarly if a spectrum is given as the second operand, it operates on each spectrum of the cube;
and a number as the second operand operates on each pixel of the cube.

Basic parameters:
--operator
Any of the following operations to perform: “+”, “-“, “*” or “/” (also “^” when the 2nd operator is
a scalar)

--scalar
To be provided if a frame should be processed together with a scalar

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

84 of 174

7.2.1.2 Flow Chart

Figure 31: Flow chart of the recipe kmo_arithmetic

The processing steps are:

1. Two operands are combined according to the arithmetic function given (+, -, /, *).
2. The first operand is always a 3D fits frame, the second operand can have different

dimensions:
a. 3D: The cubes are combined normally as described above.
b. 2D: The image operates on each spatial slice of the first cube.
c. 1D: The spectrum operates on each spectrum of the first cube.
d. scalar: The number operates on each pixel in the first cube.

3. Optionally noise maps can be provided for each operand. If done so, they will be
combined according to the operation applied to the data (see also section 2.2.2).

7.2.1.3 Input Frames
KMOS type DO category Amount Comments
F3I, F2I, F1I, F2D or
RAW

none 1 data frame,
with or without noise

F3I, F2I, F1I, F2D or
RAW

none 0, 1 data frame,
with or without noise
(optional)

This recipe also accepts also a path to a FITS file instead of a sof-file when calculating with a
scalar.

7.2.1.4 Fits Header Keywords
None specific

7.2.1.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
operator string “+”, “-“, “*”, “/”, “^” “” (mandatory)
scalar double any DBL_MIN (mandatory, if only one file

is supplied)

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

85 of 174

7.2.1.6 Output Frames
KMOS type DO Category Comments
F3I or

F2D

ARITHMETIC 1st operator is F3I and 2nd one is either F3I,
F2I, F1I or scalar

1st operator is F2D and 2nd one is either
F2D or scalar
or
1st operator is RAW and 2nd one is either
RAW or scalar

7.2.1.7 Examples
$ esorex kmo_arithmetic --operator="*" --scalar=9.7 F3I.fits

$ esorex kmo_arithmetic --operator="^" --scalar=9.7 F2D.fits

$ esorex kmo_arithmetic --operator="+" F3I_1.fits F3I_2.fits

$ esorex kmo_arithmetic --operator="/" --ifu=4 F3I_F2I.sof

with F3I_F2I.sof containing:
F3I.fits
F2I.fits

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

86 of 174

7.2.2 kmo_combine:
Combining Cubes

Recipe name used in recipe/function uses recipe/function
kmo_combine kmo_sci_red kmo_make_image

kmo_fit_profile
kmo_shift
kmclipm_combine_frames

Combine cubes spatially.

7.2.2.1 Description
This recipe shifts several exposures of an object and combines them. The different methods to
match the exposures are described below (--method parameter). The output cube is larger than
the input cubes, according to the shifts to be applied. Additionally a border of NaN values is
added. The WCS is the same as for the first exposure.
For each spatial/spectral pixel a new value will be calculated (according the --cmethod
parameter) and written into the output cube.
Only exposures with equal orientation regarding the WCS can be combined (except –-
method=”none”), north must point to the same direction. It is recommended to apply any
rotation possibly after combining.
The default mapping mode is done via the --name parameter, where the name of the object has
to be provided. The recipe searches in all input data cubes IFUs pointing to that object.

Basic parameters:
--name
--ifus
Since an object can be present only once per exposure and since it can be located in different
IFUs for the existing exposures, there are two modes to identify the objects:

! Combine by object names (default)
In this case the object name must be provided via the --name parameter. The object
name will be searched for in all primary headers of all provided frames in the keyword
ESO OCS ARMx NAME.

! Combine by index (advanced)
In this case the --ifus parameter must be provided. The parameter must have the same
number of entries as frames are provided, e.g. \"3;1;24\" for 3 exposures. The index
doesn't reference the extension in the frame but the real index of the IFU as defined in the
EXTNAME keyword (e.g. 'IFU.3.DATA').

--method
There are following sources to get the shift parameters from:

! none (default)
The cubes are directly recombined, not shifting at all. The ouput frame will have the same
dimensions as the input cubes.
If the size differs a warning will be emitted and the cubes will be aligned to the lower left
corner. If the orientation differs a warning will be emitted, but the cubes are combined
anyway.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

87 of 174

! header
The shifts are calculated according to the WCS information stored in the header of every
IFU. The output frame will get larger, except the object is at the exact same position for all
exposures. The size of the exposures can differ, but the orientation must be the same for
all exposures.

! center
The shifts are calculated using a centering algorithm. The cube will be collapsed and a 2D
profile will be fitted to it to identify the centre. With the parameter --fmethod the
function to fit can be provided. The size of the exposures can differ, but the orientation
must be the same for all exposures.

! user
Read the shifts from a user specified file. The path of the file must be provided using the --
filename parameter. For every exposure (except the first one) two shift values are
expected per line, they have to be separated with simple spaces. The values indicate pixel
shifts and are referenced to the first frame. The 1st value is the shift in x-direction to the
left, the 2nd the shift in y-direction upwards. The size of the exposures can differ, but the
orientation must be the same for all exposures.

--cmethod
Following methods of frame combination are available:

! ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

! median
At each pixel position the median is calculated.

! average
At each pixel position the average is calculated.

! sum
At each pixel position the sum is calculated.

! min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

Advanced parameters:
--fmethod
see --method = “center”
The type of function that should be fitted spatially to the collapsed image. This fit is used to create
a mask to extract the spectrum of the object. Valid values are “gauss” and “moffat”.

--filename
see --method = “user”

--cpos_rej

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

88 of 174

--cneg_rej
--citer
see --cmethod = ”ksigma”

--cmax
--cmin

see --cmethod = “min_max”

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

89 of 174

7.2.2.2 Flow Chart

Figure 32: Flow chart of the recipe kmo_combine

The processing steps are:

1. The actions taken depend on the shifting method:
a. “none”: Since no shifting is wanted the data and noise is directly propagated.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

90 of 174

b. “header”: The shift information is extracted from the fits file headers of the data
cubes. All shifts are relative to the first cube in the list.

c. “center”: The shifts are calculated using a centering algorithm. First the cubes are
collapsed spatially, then a profile will be fit to find the centre of the object.

d. “user”: The user provides a file with stored shift information, relative to the first
cube in the list.

2. The actual shift is executed now.
The data cubes and corresponding noise maps are combined using rejection.

7.2.2.3 Input Frames
KMOS type DO category Amount Comments
F31 any ! 1 any F3I data frames, the DO

category is propagated to the
output

7.2.2.4 Fits Header Keywords
Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT Int 1
EXPTIME double any

Sub Headers

Keyword Type Value Comments
CRPIX1, CRPIX2,
CRPIX3

double any all frames

CRVAL1, CRVAL2,
CRVAL3

double any all frames

CDELT1, CDELT2,
CDELT3

double any all frames

CD1_1, CD1_2,
CD2_1 CD2_2

double any all frames

7.2.2.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
name string any “” Name of the object to

combine as defined in the
keyword
ESO OCS ARMi NAME
(if this parameter is set,
the --ifus parameter can’t
be set)

ifus string "ifu1;ifu2;..." “” The indices of the IFUs to
combine. The number of
entries has to match the

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

91 of 174

number of input frames
(if this parameter is set,
the --name parameter
can’t be set

method string “none”
“header”
“center”
“user”

“none” The shifting method

cmethod string “ksigma”
“min_max”
“average”
“median”
“sum”

“ksigma” The averaging method to
apply
(optional)

Advanced parameters

Name Type valid values Default Comments
fmethod string “gauss” or ”moffat” “gauss” The 2D function to fit to

the collapsed cube
filename string any “” The path to the file with

the shift vectors.
(applies only to
--method = "user")

cpos_rej
cneg_rej

double cpos_rej ! 0,
cneg_rej ! 0

3.0
3.0

The positive and negative
rejection thresholds for
bad pixels
(optional, applies only
when --cmethod =
“ksigma”)

citer int citer ! 1 3 The number of iterations
for kappa-sigma-clipping.
(optional, applies only
when --cmethod =
“ksigma”)

cmax
cmin

int cmax ! 0
cmin ! 0

1
1

The number of maximum
and minimum pixel values
to clip with min/max-
clipping
(optional, applies only
when --cmethod =
“min_max”)

7.2.2.6 Output Frames
KMOS type DO Category Comments
F3I COMBINE_<ESO PRO CATG> The keyword “ESO PRO CATG” is

appended

7.2.2.7 Examples
$ esorex kmo_combine –name=”NGC_150” combine.sof

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

92 of 174

with combine.sof containing:
fits1_NGC_150_in_ifu_2.fits
fits2_NGC_150_in_ifu_17.fits
fits3_NGC_150_in_ifu_9.fits

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

93 of 174

7.2.3 kmo_convolve:
Convolution

Recipe name used in recipe/function uses recipe/function
kmo_convolve kmo_extract_moments

kmo_extract_pv
kmo_std_star

-

Perform a convolution with a specified profile.

7.2.3.1 Description
TBD

7.2.3.2 Flow Chart

Figure 33: Flow chart of the recipe kmo_convolve

The processing steps are:

1. If a user defined kernel is provided, it is directly convolved with the input data.
2. Otherwise a kernel will be created, according to the method provided. Some method

specific parameters are taken as input as well. The created kernel will then be convolved
with the input data.

7.2.3.3 Input Frames
TBD

7.2.3.4 Fits Header Keywords
Primary Header

TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

94 of 174

Sub Headers

TBD

7.2.3.5 Configuration Parameters
TBD

7.2.3.6 Output Frames
TBD

7.2.3.7 Examples
TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

95 of 174

7.2.4 kmo_copy:
Copy Cube Sections

Recipe name used in recipe/function uses recipe/function
kmo_copy kmo_extract_pv -

Copy a section of a cube to another cube, image or spectrum.

7.2.4.1 Description
With this recipe a specified region of an IFU-based cube (F3I), image (F2I) or vector (F1I) can be
copied to a new FITS file. One can copy just a plane out of a cube (any orientation) or a vector
out of an image etc. By default the operation applies to all IFUs. The input data can contain noise
frames which is then copied in the same manner as the input data.
It is also possible to extract a specific IFU out of a KMOS FITS structure with 24 IFU extensions
or 48 extensions if noise is present (see example in 7.2.4.7).

Basic parameters:
--ifu
Use this parameter to apply the operation to a specific IFU.

--x
--y
--z
These are the start values in each dimension. The first pixel is adressed with 1.

--xsize
--ysize
--zsize
These are the extents in each dimension to copy.

--autocrop
If set to TRUE all borders containing NaN values are cropped. Vectors will be shortened, images
and cubes can get smaller. In this special case following parameters can be omitted: --x,--y,
--z, --xsize, --ysize and --zsize.

7.2.4.2 Flow Chart

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

96 of 174

Figure 34: Flow chart of the recipe kmo_copy

The specified range (in all dimensions) of the input data is copied and returned. If the specified
ranges in one or two dimensions are reduced to a single value, then an image or a vector will be
returned, respectively.

7.2.4.3 Input Frames
KMOS type DO category Amount Comments
F3I or
F2I or
F1I

none or any 1 data frame, with or without
noise

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.2.4.4 Fits Header Keywords
None specific

7.2.4.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
ifu int 1 # ifu # NEXTEND -1 optional

If ifu is specified, the recipe
operates only on the
specified IFU.

x, y, z int 1 # x # NAXIS1
1 # y # NAXIS2
1 # z # NAXIS3

1 (mandatory if autocrop isn’t
set)

xsize,
ysize,
zsize

int 1 < xsize # NAXIS1-x
1 < ysize # NAXIS2-y
1 < zsize # NAXIS3-z

1 (optional)
If one or more of these are
omitted, a plane, a vector or
a scalar is extracted. A
scalar is returned in a vector
of size 1.

autocrop bool TRUE, FALSE FALSE optional
If set to TRUE, x, y, z, xsize,
ysize and zsize are ignored.

7.2.4.6 Output Frames
KMOS type DO Category Comments
F3I COPY for F3I as input and

x, y, z, xsize, ysize, zsize defined

KMOS type DO Category Comments
F2I COPY for F3I as input and

x, y, z, xsize, ysize defined or
x, y, z, xsize, zsize defined or

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

97 of 174

x, y, z, ysize, zsize defined

for F2I as input and
x, y, xsize, ysize defined

KMOS type DO Category Comments
F1I COPY for F3I as input and

x, y, z, xsize defined or
x, y, z, ysize defined or
x, y, z, zsize defined or
x, y, z defined (vector of size 1)

for F2I as input and
x, y, xsize defined or
x, y, ysize defined

for F1I as input and
x, xsize defined or
x defined (vector of size 1)

7.2.4.7 Examples
extract cube:
$ esorex kmo_copy --x=3 --y=2 --z=1 --xsize=2 --ysize=3
 --zsize=6 F3I.fits

extract plane:
$ esorex kmo_copy --x=3 --y=2 --z=1 --xsize=2 --ysize=3 F3I.fits

extract vector just of IFU 4:
$ esorex kmo_copy --x=3 --y=2 --z=1 --ysize=3 –ifu=4 F3I.fits

extract whole IFU 4:
$ esorex kmo_copy --x=1 --y=1 --z=1 --xsize=<NAXIS1>

--ysize=<NAXIS2> --zsize=<NAXIS3> -–ifu=4 F3I.fits

extract scalar:
$ esorex kmo_copy --x=3 --y=2 --z=1 F3I.fits

autocrop:
$ esorex kmo_copy --autocrop=TRUE --ifu=8 F3I.fits

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

98 of 174

7.2.5 kmo_extract_spec:
Extracting Spectra

Recipe name used in recipe/function uses recipe/function
kmo_extract_spec kmo_std_star

kmo_sky_tweak
kmo_make_image
kmo_fit_profile

Extract a spectrum from a cube.

7.2.5.1 Description
This recipe extracts a spectrum from a datacube. The datacube must be in F3I KMOS FITS
format (either with or without noise). The output will be a similarly formatted F1I KMOS FITS
file.

Basic parameters:
--mask_method
There are several ways to define the region to consider for spectrum calculation:

• integrated (default)
A circular mask with defined centre and radius is created (--centre and --radius
have to be defined). This mask is applied to all extensions.

• mask
An arbitrary mask can be provided (for example the mask created by kmo_sky_mask can
be used). The mask must be in F2I KMOS FITS format, mustn't contain noise and must
have as many extensions as the input cube. The mask can be binary as well as it can
contain float values, so a weighted mask is also possible. (0: pixels is ignored, 1: pixel is
included) The mask must be of the same size that the input datacube.

• optimal
The mask is created automatically by fitting a normalised profile (using kmo_fit_profile)
to the image of the datacube (using kmo_make_image the datacube is summed up in
spectral direction according to the specified --cmethod). This profile is then used as
mask input. When --save_mask is set to true the mask is saved on disk. The remaining
parameters not described here apply to the fitting of the profile.

If the spectra of several objects in a IFU should be extracted, --mask_method="mask" is
recommended. With several calls to kmo_extract_spec using different masks all spectra can be
extracted.

Advanced parameters:
--centre
--radius
see --mask_method = “integrated”

--save_mask
see --mask_method = “optimal”

--cmethod
Applies only if –mask_method = “integral”
Following methods of frame combination are available:

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

99 of 174

! ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

! median
At each pixel position the median is calculated.

! average
At each pixel position the average is calculated.

! sum
At each pixel position the sum is calculated.

! min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

--cpos_rej
--cneg_rej
--citer
see --cmethod = ”ksigma”

--cmax
--cmin
see --cmethod = “min_max”

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

100 of 174

7.2.5.2 Flow Chart

Figure 35: Flow chart of the recipe kmo_extract_spec

The processing steps are:

1. A mask is generated (or taken as input) where sky is 0.0 and object is 1.0:
a. “optimal” method

I. The data cube is collapsed using kmo_make_image.
II. From the resulting image the signal to noise, based on a Gaussian fit using

kmo_fit_profile, is estimated.
III. The fit will be scaled in a way that the maximum value equals one. The

result is a mask with float values.
b. “integrated” method

I. A binary mask with specified centre and radius is defined.
c. “mask” method

I. The binary input mask is taken.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

101 of 174

2. All unmasked pixels in each spatial slice are summed and weighted all along the spectral
axis.

3. An optional noise map is masked the same way as the input data and combined as
described in Sect. 2.2.2.

4. If there are several objects in a single cube, their spectra can be extracted separately using
different masks.

7.2.5.3 Input Frames
KMOS type DO category Amount Comments
F3I EXTRACT_DATA 1 cube with or without noise
F2I EXTRACT_MASK 0 or

1
(optional, applies only when
--mask_method =”mask”)

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.2.5.4 Fits Header Keywords
None specific

7.2.5.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
mask_method string “optimal”

“integrated”
“mask”

“integrated” (optional)

Advanced parameters

Name Type valid values Default Comments
centre double[2] [0 # x # NAXIS1,

0 # y # NAXIS2]
[7.5,7.5] The centre of the circular mask

[pixel]
(mandatory, if --mask_method =
 ”integrated”)

radius double radius ! 0 3.0 The radius of the circular mask
[pixel]
(mandatory, if --mask_method =
”integrated”)

save_mask bool true
false

false True if the calculated mask
should be saved.
(optional, applies only when
--mask_method = “optimal”)

cmethod string “ksigma”
“min_max”
“average”
“median”
“sum”

“ksigma” The averaging method to apply
(optional)

cpos_rej
cneg_rej

double cpos_rej ! 0,
cneg_rej ! 0

3.0
3.0

The positive and negative rejec-
tion thresholds for bad pixels
(optional, applies only when

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

102 of 174

--cmethod = “ksigma”)
citer int citer ! 1 3 The number of iterations for

kappa-sigma-clipping.
(optional, applies only when
--cmethod = “ksigma”)

cmax
cmin

int cmax ! 0
cmin ! 0

1
1

The number of maximum and
minimum pixel values to clip
with min/max-clipping
(optional, applies only when
--cmethod = “min_max”)

7.2.5.6 Output Frames
KMOS type DO Category Comments
F1I EXTRACT_SPEC Extracted spectrum
F2I EXTRACT_SPEC_MASK The calculated mask

(optional, if --mask_method="optimal"
and --save_mask=true)

7.2.5.7 Examples
$ esorex kmo_extract_spec –-mask_method=”integrated”
 --centre=”3.0:4.5” –-radius=4 cube.fits

$ esorex kmo_extract_spec –-mask_method=”optimal” cube.fits

$ esorex kmo_extract_spec –-mask_method=”mask” extract.sof

with extract.sof containing:
F3I.fits DATA
F2I.fits MASK

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

103 of 174

7.2.6 kmo_fit_profile:
Fitting Spectral and Spatial Profiles

Recipe name used in recipe/function uses recipe/function
kmo_fit_profile kmo_extract_spec

kmo_std_star
kmo_rtd_image
kmo_combine
kmo_extract_moments

-

Fit spectral line profiles as well as spatial profiles with a simple function - for example to measure
resolution or find the centre of a source.

7.2.6.1 Description
This recipe creates either spectral or spatial profiles of sources using different functions to fit.
Spectral profiles can be created for F1I frames (if WCS is defined in the input frame, the output
parameters are in respect to the defined WCS).
Spatial profiles can be created for F2I frames (any WCS information is ignored here).
If the frames contain no noise information, constant noise is assumed for the fitting procedure.

Basic parameters:
--method
F1I frames can be fitted using either "gauss", "moffat" or "lorentz" function.
F2I frames can be fitted using either "gauss" or "moffat" function.

Advanced parameters:
--range
For F1I frames the spectral range can be defined. With available WCS information the range can
be provided in units (e.g. “1.2;1.5”), otherwise in pixels (e.g. “112;224).
For F2I frames the spatial range can be defined as follow: “x1,x2;y1,y2”

7.2.6.2 Flow Chart

Figure 36: Flow chart of the recipe kmo_fit_profile

The processing steps are:

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

104 of 174

1. The region to fit is defined by the spectral (1D) or spatial (2D) interval provided. In this
interval, the peak is identified.

2. Then a function is fitted to the interval according to a defined profile (Gaussian, Moffat,
Lorentzian). Output parameters are the position (either lambda-position or pixel number
depending if WCS data is provided in the headers of the input data frames) of the
maximum pixel, the position of the centroid and the parameters of the function fit.

7.2.6.3 Input Frames
KMOS type DO category Amount Comments
F1I or
F2I

none or any 1 data frame, with or without
noise

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.2.6.4 Fits Header Keywords
Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT Int 1
EXPTIME double any

Sub Headers

Keyword Type Value Comments
CRPIX1 double any (optional for F1I frames)
CRVAL1 double any (optional for F1I frames)
CDELT1 double any (optional for F1I frames)

7.2.6.5 Configuration Parameters
Name Type valid values Default Comments
method string “gauss”,

“moffat”,
“lorentz”

“gauss” (optional,
“lorentz” applies only to
F1I frames)

range string “x1,x2” (for F1I)

or

“x1,x2; y1,y2” (for F2I)

“” F1I frames with WCS:
values are in microns
F1I frames without WCS:
values denote pixel positions
(zero based).
F2I frames:
values denote pixel positions
(base 1 for images, FITS
convention)
(optional,
default is the whole range)

7.2.6.6 Output Frames
KMOS type DO Category Comments

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

105 of 174

F1I or
F2I

FIT_PROFILE Fitted 1D-profile or
Fitted 2D-profile
(in both cases without noise)

7.2.6.7 Examples
$ esorex kmo_fit_profile f1i_with_noise.fits

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

106 of 174

7.2.7 kmo_make_image:
Making Images

Recipe name used in recipe/function uses recipe/function
kmo_make_image kmo_std_star

kmo_illumination
kmo_rtd_image
kmo_extract_spec
kmo_combine

-

Collapse a cube to create a spatial image.

7.2.7.1 Description
This recipe collapses a cube along the spectral axis using rejection. By default all spectral slices
are averaged.
Errors are propagated for the same spectral ranges as for the input data if a noise map is provided.

Basic parameters:
--range
The spectral range can be delimited to one or several sub-ranges like “1.8,1.9” or “1.8,1.9;
2.0,2.11”

--cmethod
Following methods of collapsing a cube are available:

! ksigma (default)
An iterative sigma clipping. For each position all pixels in the spectrum are examined. If
they deviate significantly, they will be rejected according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
where --cpos_rej, --cneg_rej and --citer are the corresponding configuration
parameters. In the first iteration median and percentile level are used (See Sec. 8.2).

! median
At each pixel position the median is calculated.

! average
At each pixel position the average is calculated.

! sum
At each pixel position the sum is calculated.

! min_max
The specified number of minimum and maximum pixel values will be rejected.
--cmax and --cmin apply to this method.

Advanced parameters:
--threshold
Optionally an OH spectrum can be provided. In this case a threshold can be defined. The
wavelengths of values above the threshold level in the OH spectrum are omitted in the input
frame. This parameter can be combined with the --range parameter. Negative threshold values
are ignored.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

107 of 174

Own spectra can be converted into the required F1S KMOS FITS format for the OH spectrum
using kmo_fits_stack.

--cpos_rej
--cneg_rej
--citer
see --cmethod = ”ksigma”

--cmax
--cmin
see --cmethod = “min_max”

7.2.7.2 Flow Chart

Figure 37: Flow chart of the recipe kmo_make_image

The processing steps are:

1. If a OH line spectrum is provided, the spectral slices which are to be combined are
identified according to the threshold level and the wavelength ranges applied to the
spectrum (i.e. if the wavelength of the spectral slice lies in between a predefined range or
above the threshold level in the OH line spectrum, it is omitted).

2. The identified spectral slices are averaged to create a spatial image (Either applying a
median or averaging using rejection or min_max rejecting a predefined number of max-
and min-values).

3. Optionally a noise map matching the data cube can be provided, it will be combined along
the same spectral ranges as defined above (see also section 2.2.2) and output as a 2d noise
map.

7.2.7.3 Input Frames
KMOS type DO category Amount Comments
F3I MAKE_IMG_DATA 1 data frame, with or without

noise

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

108 of 174

F1S OH_LIST 0 or
1

the OH line spectrum. Own
spectra can be converted to
F1S using kmo_fits_stacker
(optional)

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.2.7.4 Fits Header Keywords
Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT int 1
EXPTIME double any

Sub Headers

Keyword Type Value Comments
CRPIX3 double any
CRVAL3 double any
CDELT3 double any

7.2.7.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
range string “start1,end1;start2,end2

;…”
“” The spectral ranges to

combine
(optional, applies only if a
OH-spectrum is provided)

threshold double any,
if threshold < 0 then no
thresholding is applied

0.1 The OH threshold level
(optional, applies only if a
OH-spectrum is provided)

cmethod string “ksigma”
“min_max”
“average”
“median”
“sum”

“ksigma” The averaging method to
apply
(optional)

cpos_rej
cneg_rej

double cpos_rej ! 0,
cneg_rej ! 0

3.0
3.0

The positive and negative
rejection thresholds for bad
pixels
(optional, applies only
when --cmethod =
“ksigma”)

citer int citer ! 1 3 The number of iterations for
kappa-sigma-clipping.
(optional, applies only
when --cmethod =
“ksigma”)

cmax int cmax ! 0 1 The number of maximum

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

109 of 174

cmin cmin ! 0 1 and minimum pixel values
to clip with min/max-
clipping
(optional, applies only
when --cmethod =
“min_max”)

7.2.7.6 Output Frames
KMOS type DO Category Comments
F2I MAKE_IMAGE Collapsed data cubes

7.2.7.7 Examples
$ esorex kmo_make_image data.fits

$ esorex kmo_make_image data_noise.fits

$ esorex kmo_make_image --method=”median” data_noise.fits

$ esorex kmo_make_image --method=”average” --pos_rej_thresh=2.2
 --neg_rej_thresh=1.7 --iterations=2
 data_noise.fits

$ esorex kmo_make_image --method=”min_max” --nr_max=20 --nrmin=10
 data_noise.fits

$ esorex kmo_make_image F3I_ohspec.sof

with F3I_ohspec.sof containing:
data.fits DATA
oh_spec.fits OH_LIST

$ esorex kmo_make_image --range=”1.8,1.9;2.0,2.1” F3I_ohspec.sof

with F3I_ohspec.sof containing:
data.fits DATA
oh_spec.fits OH_LIST

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

110 of 174

7.2.8 kmo_median:
Median Filtering

Recipe name used in recipe/function uses recipe/function
kmo_median - -

Perform a median filtering over the cube/image/spectrum.

7.2.8.1 Description
TBD

7.2.8.2 Flow Chart

Figure 38: Flow chart of the recipe kmo_median

The input data is filtered using median filters with variable kernel sizes in each dimension.

7.2.8.3 Input Frames
TBD

7.2.8.4 Fits Header Keywords
Primary Header

TBD

Sub Headers

TBD

7.2.8.5 Configuration Parameters
TBD

7.2.8.6 Output Frames
TBD

7.2.8.7 Examples
TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

111 of 174

7.2.9 kmo_noise_map:
Noise Estimation

Recipe name used in recipe/function uses recipe/function
kmo_noise_map kmo_std_star

kmo_sci_red
-

Generate a noise map from a raw frame.

7.2.9.1 Description
The noise in each pixel of the input data is estimated using gain and readnoise. The readnoise is
expected to be in the primary header (ESO DET CHIP RON), the gain (ESO DET CHIP GAIN)
has to be in each of the subsequent headers of each detector frame. The output is the initial noise
map of the data frame.

7.2.9.2 Flow Chart

Figure 39: Flow chart of the recipe kmo_noise_map

The noise in each pixel of the input data is estimated according to the method described in Sect.
2.2.1. The output is the initial noise map of the data frame.

7.2.9.3 Input Frames
KMOS type DO category Amount Comments
RAW none or any 1 raw data frame

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.2.9.4 Fits Header Keywords
Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT Int 1
EXPTIME double any

Sub Headers

Keyword Type Value Comments
ESO DET CHIP GAIN double any
ESO DET CHIP RON double any

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

112 of 174

7.2.9.5 Configuration Parameters
None

7.2.9.6 Output Frames
KMOS type DO Category Comments
F2D NOISE_MAP Initial noise map

7.2.9.7 Examples
$ esorex kmo_noise_map RAW.fits

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

113 of 174

7.2.10 kmo_reconstruct:
Reconstructing a Cube

Recipe name used in recipe/function uses recipe/function
kmo_reconstruct kmo_std_star

kmo_illumination
kmo_sci_red
kmo_rtd_image

-

Performs the cube reconstruction using different interpolation methods.

7.2.10.1 Description
Data with or without noise is reconstructed into a cube using the calibration frames XCAL,
YCAL and LCAL. XCAL and YCAL are generated using recipe kmo_flat, LCAL is generated
using recipe kmo_wave_cal.
The input data can contain noise extensions and will be reconstructed into additional extensions.

Basic parameters:
--imethod
The interpolation method used for reconstruction.

--detimg
Specify if a resampled image of the input frame should be generated. Therefore all slitlets of all
IFUs are aligned one next to the other. This frame serves for quality control. One can immediately
see if the reconstruction was successful.

Advanced parameters:
--flux
Specify if flux conservation should be applied.

--neighborhoodRange
Defines the range to search for neighbors during reconstruction

--b_samples
The number of samples in spectral direction for the reconstructed cube. Ideally this number
should be greater than 2048, the detector size.

--b_start
--b_end
Used to define manually the start and end wavelength for the reconstructed cube. By default the
internally defined values are used (see Section 6.3).

--outputextension
Set to TRUE if OBS_ID (from input frame header) should be appended to the output frame.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

114 of 174

7.2.10.2 Flow Chart

Figure 40: Flow chart of the recipe kmo_reconstruct

The processing steps are:

1. First the LUT for correcting spectral curvature and wavelength position is calculated and
saved to disk or just loaded from disk (see Sec. 6.2)

2. Then the data cube and the optional noise map are interpolated according the LUT.
Additionally the interpolation scheme can be chosen and if flux conservation should be
applied.

3. If desired the reconstructed cube can also be saved as resampled image, meaning that the
reconstructed cube is decomposed into its slitlets which are saved into a frame with one
slitlet beside the other. This way the quality of reconstruction can be determined quicklys
visually.

7.2.10.3 Input Frames
KMOS type DO category Amount Comments
RAW or
F2D

DARK or
FLAT_ON or
ARC_ON or
OBJECT or
STD

1 data frame,
with or without noise

F2D XCAL 1 Calibration frame 1
(from kmo_flat)

F2D YCAL 1 Calibration frame 2
(from kmo_flat)

F2D LCAL 1 Calibration frame 3
(from kmo_wave_cal)

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

115 of 174

F2L WAVE_BAND 1 Table with start-/end-values
of wavelengthrange

7.2.10.4 Fits Header Keywords
Primary Header

None

Sub Headers

None

7.2.10.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
imethod string “NN”

“lwNN”
“swNN”
“MS”
“CS”

“NN” Interpolation method:
NN: Nearest Neighbor
lwNN: linear weighted NN
swNN: square weighted NN
MS: Modified Shepard’s
method
CS: Cubic spline
(optional)

detimg bool TRUE, FALSE FALSE TRUE if resampled detector
image should be created,
FALSE otherise

Advanced parameters

Name Type valid values Default Comments
flux bool TRUE, FALSE TRUE Apply flux conservation
neighborhoodRange double ! 1 1.001 Defines the range to search

for neighbors
b_samples int b_samples > 2 2460 Nr. of samples of

reconstructed data for the
wavelength

b_start
b_end

double b_start > 0.0
b_end > b_start

-1.0 Start and end wavelength.
The defaults of -1.0 instruct
to use the internally defined
range (see Section 6.3)

outputextension bool TRUE, FALSE FALSE TRUE if OBS_ID keyword
should be appended to output
frames, FALSE otherwise

Options for pipeline developers only:

Name Type valid values Default Comments
dev_flip bool TRUE,

FALSE
FALSE Set this parameter to TRUE if the

wavelengths on the detector are
ascending from bottom to top (only for
old simulation data)

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

116 of 174

7.2.10.6 Output Frames
KMOS type DO Category Comments
F3I CUBE_DARK or

CUBE_FLAT or
CUBE_ARC or
CUBE_OBJECT_SCIENCE or
CUBE_SKY_SCIENCE

Reconstructed cube with or without
noise

F2D DET_IMG_REC if parameter –detimg has been set to
TRUE

Additional Output

All recipes doing reconstruction of cubes create a LUT which by default is saved to disk. For
further information see Sec. 6.4.

7.2.10.7 Examples
$ esorex kmo_reconstruct reconstruct.sof

with reconstruct.sof containing:
object_science.fits OBJECT_SCIENCE
xcal.fits XCAL
ycal.fits YCAL
lcal.fits LCAL

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

117 of 174

7.2.11 kmo_rotate:
Rotating a Cube

Recipe name used in recipe/function uses recipe/function
kmo_rotate kmo_extract_pv -

Rotate a cube spatially.

7.2.11.1 Description
This recipe rotates a cube spatially (CCW). If the rotation angle isn’t a multiple of 90 degrees, the
output cube will be interpolated and get larger accordingly.
By default all IFUs will be rotated.

Basic parameters:
--rotations
This parameter must be supplied. It contains the amount of rotation to apply. The unit is in
degrees. If it contains one value (e.g. “3.5”) all IFUs are rotated by the same amount. If 24 values
are supplied each IFU is rotated individually (e.g. “2.3;15.7;…;-3.3”).

--imethod
The interpolation method to apply when rotating an angle not being a multiple of 90. There are
two methods available:

• BCS: Bicubic spline
• NN: Nearest Neighbor (currently disabled)

--ifu
If a single IFU should be rotated, it can be defined using the --ifu parameter (--rotations
parameter contains only one value).

Advanced parameters:
--flux
Specify if flux conservation should be applied.

--extrapolate
By default the output frame grows when rotating an angle not being a multiple of 90. In this case
none of the input data is lost. When it is desired to keep the same size as the input frame this
parameter can be set to TRUE and the data will be clipped.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

118 of 174

7.2.11.2 Flow Chart

Figure 41: Flow chart of the recipe kmo_rotate

The processing steps are:

1. First the LUT representing the spatial rotation is calculated.
2. Then the data cube and the optional noise map are interpolated according the LUT.
Additionally the interpolation scheme can be chosen and if flux conservation should be
applied.

7.2.11.3 Input Frames
KMOS type DO category Amount Comments
F3I none or any 1 data frame,

with or without noise

This recipe also accepts also a path to a FITS file instead of a sof-fil

7.2.11.4 Fits Header Keywords
Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT Int 1
EXPTIME double any

Sub Headers

Keyword Type Value Comments
CRPIX1, CRPIX2 double any
CRVAL1, CRVAL2 double any
CDELT1, CDELT2 double any
CD-Matrix double any

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

119 of 174

7.2.11.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
rotations string string with 1 or 24 elements

[degrees]
e.g. “2.3;15.7;…;-3.3”

“” The rotations for all
specified IFUs
(mandatory)

imethod string “BCS”
“NN”

“BCS” Interpolation method:
BCS: Bicubic spline
NN: Nearest Neighbor
(optional, applies only
when rotation angle
isn’t a multiple of 90
degrees)

ifu int 24 ! ifu ! 0 0 The ifu to rotate.
0 rotates all ifus the
same amount
(optional)

Advanced parameters

Name Type valid values Default Comments
flux bool TRUE, FALSE TRUE Apply flux

conservation
extrapolate int TRUE, FALSE FALSE FALSE: Output frame

will be larger than the
input
TRUE: Output and
input frame have the
same size, data will be
clipped
(optional, applies only
when rotation angle
isn’t a multiple of 90
degrees

7.2.11.6 Output Frames
KMOS type DO Category Comments
F3I ROTATE Rotated cube

7.2.11.7 Examples
$ esorex kmo_rotate –-ifu=8 –-rotations=”93.87” data.fits

$ esorex kmo_rotate –rotations=”1.1;3.8;-4.5;……;18,9” data.fits

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

120 of 174

7.2.12 kmo_shift:
Translating a Cube

Recipe name used in recipe/function uses recipe/function
kmo_shift kmo_extract_pv

kmo_combine
-

Shift a cube spatially.

7.2.12.1 Description
This recipe shifts a cube spatially. A positive x-shift shifts the data to the left, a positive y-shift
shifts upwards, where a shift of one pixel equals 0.2 arcsec. The output will still have the same
dimensions, but the borders will be filled with NaNs accordingly.
To adjust only the WCS without moving the data the --wcs-only parameter has to be set to
TRUE. The WCS is updated in the same way as if the data would have moved as well. This
means that the point at (x,y) has the same coordinates as the point (x+1,y+1) after updating the
WCS (the WCS moved in the opposite direction).

Basic parameters:
--shifts
This parameter must be supplied. It contains the amount of shift to apply. The unit is in arcsec. If
the --shifts parameter contains only two values (x,y), all IFUs will be shifted by the same
amount. If it contains 48 values (x1,y1;x2,y2;...;x24,y24), the IFUs are shifted individually.

--imethod
The interpolation method to apply when the shift value isn’t a multiple of the pixel scale. There
are two methods available:

• BCS: Bicubic spline
• NN: Nearest Neighbor

--ifu
If a single IFU should be shifted, it can be defined using the --ifu parameter (--shifts
parameter contains only two values).

Advanced parameters:
--flux
Specify if flux conservation should be applied when applying a subpixel shift.

--extrapolate
By default no extrapolation is applied. At the borders NaN values are introduced. When choosing
“BCS” as interpolation method and applying a sub-pixel shift, extrapolation can be switched on.

--wcs-only
By default data and WCS are shifted in sync. If this parameter is set to TRUE only the WCS is
updated (i.e. if someone thinks that the IFU isn’t pointing exactly to the correct coordinates).

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

121 of 174

7.2.12.2 Flow Chart

Figure 42: Flow chart of the recipe kmo_shift

The processing steps are:

1. First the LUT representing the shift is calculated.
2. Then the data cube and the optional noise map are interpolated according the LUT.
Additionally the interpolation scheme can be chosen and if flux conservation should be
applied.

7.2.12.3 Input Frames
KMOS type DO category Amount Comments
F3I none or any 1 data frame,

with or without noise

This recipe also accepts also a path to a FITS file instead of a sof-fil

7.2.12.4 Fits Header Keywords
Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT Int 1
EXPTIME double any

Sub Headers

Keyword Type Value Comments
CRPIX1, CRPIX2 double any
CRVAL1, CRVAL2 double any
CDELT1, CDELT2 double any
CD-Matrix double any

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

122 of 174

7.2.12.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
shifts string string with 2 or 48 elements

[arcsec]
e.g. [x1, y1; x2, y2;…]

“” The shifts for each spatial
dimension for all specified
IFUs (mandatory)

imethod string “BCS”
“NN”

“BCS” Interpolation method:
BCS: Bicubic spline
NN: Nearest Neighbor
(optional, applies only
when the shift isn’t a
multiple of the pixel scale)

ifu int 24 ! ifu ! 0 0 The ifu to shift.
0 shifts all ifus the same
amount
(optional)

Advanced parameters

Name Type valid values Default Comments
flux bool TRUE, FALSE TRUE Apply flux conservation

(optional)
extrapolate bool TRUE, FALSE FALSE FALSE: shifted IFU will

be filled with NaNs at the
borders
TRUE: shifted IFU will
be extrapolated at the
borders
 (optional, applies only
when method=BCS and
doing sub pixel shifts)

wcs-only bool TRUE, FALSE FALSE FALSE: data and WCS
are shifted together
TRUE: only the WCS is
shifted

7.2.12.6 Output Frames
KMOS type DO Category Comments
F3I SHIFT Shifted cube

7.2.12.7 Examples
$ esorex kmo_shift –-ifu=8 –-shifts=”0.2,0.11” data.fits

$ esorex kmo_shift –shifts=”0.4,0.2;-0.01,-0.09;……;0.1;0.1” data.fits

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

123 of 174

7.2.13 kmo_sky_mask:
Creating a Mask of Sky Pixels

Recipe name used in recipe/function uses recipe/function
kmo_sky_mask kmo_sky_tweak kmo_stats

Create a mask of spatial pixels that indicates which pixels can be considered as sky.

7.2.13.1 Description
This recipes calculates masks of the skies surrounding the objects in the different IFUs of a
reconstructed F3I frame. In the resulting mask pixels belonging to objects have value 1 and sky
pixels have value 0.

The noise and the background level of the input data cube are estimated using the mode
calculated in kmo_stats. If the results aren't satisfactory, try changing --cpos_rej and --
cneg_rej. Then pixels are flagged in the data cube which have a value less than the mode plus
twice the noise (val < mode + 2*sigma). For each spatial pixel the fraction of flagged pixels in its
spectral channel is determined.
Spatial pixels are selected where the fraction of flagged spectral pixels is greater than 0.95
(corresponding to the 2*sigma above).

The input cube can contain noise extensions, but they will be ignored. The output doesn’t contain
noise extensions.

Basic parameters:
--fraction
The fraction of pixels that have to be greater than the threshold can be defined with this parameter
(value must be between 0 and 1).

--range
If required, a limited wavelength range can be defined (e.g. “1.8,2.1).

Advanced parameters:
--cpos_rej
--cpos_rej
--citer
An iterative sigma clipping is applied in order to calculate the mode (using kmo_stats). For each
position all pixels in the spectrum are examined. If they deviate significantly, they will be rejected
according to the conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
In the first iteration median and percentile level are used.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

124 of 174

7.2.13.2 Flow Chart

Figure 43: Flow chart of the recipe kmo_sky_mask

The processing steps are:

1. The noise and the background level (mode) of the input data cube are estimated. Note that
although the noise varies with wavelength, a single estimate of the noise is sufficient for
the purpose here.

2. Flag pixels in the data cube which have a value less than the mode plus twice the noise
(val < mode + 2#)

3. For each spatial pixel the fraction of flagged pixels in its spectral channels is determined.
If required, a limited wavelength range can be provided for this step.

4. Spatial pixels are selected where the fraction of flagged spectral pixels is greater than 0.95
(corresponding to the 2# above)

5. If less than a specified percentage of spatial pixels are included, then increase the selection
to include this many.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

125 of 174

Create a mask indicating ‘sky’ pixels (sky = 0, object = 1).

7.2.13.3 Input Frames
KMOS type DO category Amount Comments
F3I none or any 1 one reconstructed frame

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.2.13.4 Fits Header Keywords
Primary Header

Keyword Type Value Comments
MINDIT double ~2.5 Estimated value
NDIT Int 1
EXPTIME double any

Sub Headers

Keyword Type Value Comments
CRPIX3 double any
CRVAL3 double any
CDELT3 double any

7.2.13.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
fraction double 1.0 ! fraction ! 0.0 0.95 Minimum fraction of

spatial pixels to select
as sky
(optional)

range string “start,end” “” Min & max spectral
range to use in sky
pixel determination
(microns)
(optional)

Advanced parameters

Name Type valid values Default Comments
cpos_rej
cneg_rej

double cpos_rej ! 0,
cneg_rej ! 0

3.0
3.0

The positive and
negative rejection
thresholds for bad
pixels
(optional)

citer int citer ! 1 3 The number of
iterations for kappa-
sigma-clipping.
(optional)

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

126 of 174

7.2.13.6 Output Frames
KMOS type DO Category Comments
F2I SKY_MASK The sky mask frame

7.2.13.7 Examples
$ esorex kmo_sky_image f3i.fits

$ esorex kmo_sky_image –fraction=0.6 f3i.fits

$ esorex kmo_sky_image --ranges=”1.8,1.9” f3i.fits

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

127 of 174

7.2.14 kmo_stats:
Basic Statistics

Recipe name used in recipe/function uses recipe/function
kmo_stats kmo_bkg_sub

kmo_sky_tweak
kmo_sky_mask

-

Perform basic statistics on a KMOS-conform fits-file.

7.2.14.1 Description
This recipe performs basic statistics on KMOS-conform data-frames of type F2D, F1I, F2I and
F3I either with or without noise and RAW. Optionally a 2D mask can be provided to define a
region on which the statistics should be calculated on (mask 0: exclude pixel, mask 1: include
pixel). A mask can’t be provided for statistics on F1I frames.
The output is stored in a vector of length 11. The vector represents following values:

1. Number of pixels
2. Number of finite pixels
3. Mean
4. Standard Deviation
5. Mean with iterative rejection (i.e. mean & sigma are calculated iteratively, each time

rejecting pixels more than +/-N sigma from the mean)
6. Standard Deviation with iterative rejection
7. Median
8. Mode (i.e. the peak in a histogram of pixel values)
9. Noise (a robust estimate given by the standard deviation from the negative side of the

histogram of pixel values)
10. Minimum
11. Maximum

The same numerical operations are applied to the noise as with the data itself.

Basic parameters:
--ext
These parameters specify with extensions to process. The value 0, which is default, calulates all
extensions.

Advanced parameters:
--cpos_rej
--cpos_rej
--citer
An iterative sigma clipping is applied in order to calculate the mode. For each position all pixels
in the spectrum are examined. If they deviate significantly, they will be rejected according to the
conditions:
 val > mean + stdev * cpos_rej
and
 val < mean - stdev * cneg_rej
In the first iteration median and percentile level are used.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

128 of 174

7.2.14.2 Flow Chart

Figure 44: Flow chart of the recipe kmo_ stats

The input data and an optional mask (2D) are taken as inputs and a vector of length 11 is returned
as output.

7.2.14.3 Input Frames
KMOS type DO category Amount Comments
F3I,
F2I,
F1I,
F2D,
RAW

STATS_DATA 1 one frame,
with or without noise

F2I STATS_MASK 0 or 1 (optional)

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.2.14.4 Fits Header Keywords
None

7.2.14.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
ext int ext ! 0 0 Specifies which

extensions to calculate. 0
calculates them all
 (optional)

Advanced parameters

Name Type valid values Default Comments
cpos_rej
cneg_rej

double cpos_rej ! 0,
cneg_rej ! 0

3.0
3.0

The positive and negative
rejection thresholds for
bad pixels (optional)

citer int citer ! 1 3 The number of iterations
for kappa-sigma-clipping.
(optional)

ifu int ifu ! 0 0 Specifies which

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

129 of 174

extensions to calculate. 0
calculates them all
(optional, applies only for
F1I, F2I and F3I frames)

det int det ! 0 0 Specifies which
extensions to calculate. 0
calculates them all
(optional, applies only for
F2D and RAW frames)

7.2.14.6 Output Frames
KMOS type DO Category Comments
F1I STATS The calculated statistics parameters

7.2.14.7 Examples
$ esorex kmo_stats F3I.fits

with stats.sof containing:
F3I.fits DATA

$ esorex kmo_stats –ifu=1 stats.sof

with stats.sof containing:
F3I.fits DATA
F2I.fits MASK

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

130 of 174

7.3 Development Tools
First some environment variables are explained then some of the development recipes are
documented. Neither of these are intended to be used in productive use of the pipeline!

KMO_WAVE_LINE_ESTIMATE (default: 2)
Used in kmo_wave_cal recipe.

• 0: use point pattern matching module from CPL
• 1: use cross correlation routine from CRIRES pipeline

(needs to load polynom coefficients table kmo_wave_guess_polynom_table.fits)
• 2: use own routine using a first guess created with 1st method which is passed as additional

frame when doing wave calibration

KMO_WAVE_CAL_DATA_PREFIX (default: not set)
Used in kmo_wave_cal recipe.

• If set to a string: slitlet-data is stored to fits-files with this prefix (needed for provided IDL
tool to generate estimetes (see KMO_WAVE_LINE_ESTIMATE, method 2))

• If not set: no output is generated

KMO_BAND_METHOD (default: 0)
Used in all recipes using reconstruction.

• 0: start and end wavelength are hardcoded (2460 spectral values)
• 1: start and end wavelength are determined via LCAL frame (min/max value)

KMO_WAVE_RECONSTRUCT_METHOD (default: not set)
Used in kmo_wave_cal recipe.

• Provide another reconstruction method than the default “lwNN”

The recipes in this section are intended for use for the pipeline developers. They can be used to
setup test cases with individual FITS files. The most interesting recipe for pipeline users might be
kmo_fits_check. It can be used to display information on a KMOS FITS file.

7.3.1 kmo_dev_setup:

Creating a KMOS-conform FITS file semi-automatically

Recipe name used in recipe/function uses recipe/function
kmo_dev_setup - kmo_fits_stack

Creates KMOS conform fits-files specific to recipes.

7.3.1.1 Description
This recipe is intended to create KMOS conform files in a semi-automatic manner. It is sufficient
to provide a single FITS file and a few parameters to create KMOS conform FITS files suited for
different recipes. Internally it calls repeatedly the recipe kmo_fits_stack. There are also
parameters that allow to prepare the frames, i.e. early test out of the lab, in a way they can be
processed.

One extension from the input frame is taken, some noise is added automatically in order to create
similar frames for the other extensions.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

131 of 174

Basic parameters:
--type
Defines for which recipe the files should be created.

--extension
Defines which extension is used to craete frames\n"

--xshift
--yshift
Shift frames in x and y\n"

--rotangle
Sets the ESO OCS ROT OFFANGLE keyword in the primary header.

--topcrop
--bottomcrop
--leftcrop
--rightcrop
These are cropping the image (filled with 0).

--mainkey
--subkey
Add individual keywords to primary- or sub-header

--valid
Defines if IFUs are active or inactive

--objects
Defines if IFUs contain object or sky.

--date
Sets the DATE-OBS keword in the primary header.

--filter
Sets the filter type for all extensions.

--grating
Sets the grating type for all extensions.

7.3.1.2 Flow Chart
None

7.3.1.3 Input Frames
KMOS type DO category Amount Comments
none any 1 any FITS file with or without

extensions

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

132 of 174

7.3.1.4 Fits Header Keywords
The keywords already present in the provided input FITS files are copied to the output KMOS
FITS files. Additional keywords can be added using the -- mainkey and --subkey
parameters. The keywords provided with mainkey go into the empty primary header, the subkey
keywords go into ALL subsequent extensions.

The mainkey and subkey parameters consist of one or several triples. A triple has following order:
keyword, type and value. The strings mustn’t contain any spaces, the entries have to be separated
by a semicolon (;) since entries also can contain commas. Triples are also separated by
semicolons.

Example:
mainkey = “DIT;double;1.0;EXPTIME;double; 519.9;WEATHER;string;very_sunny”
subkey = “CHIP1;bool;1.0;”

Valid types are: string, int, float, double and bool.

7.3.1.5 Configuration Parameters
Name Type valid values Default Comments
type string DARK,

DARK_MASTER,
FLAT_ON,
FLAT_OFF,
ARC_ON,
ARC_OFF,
STD,
SKY,
GENERIC

- -

extension int extension $ 0 0 FITS extension to process
(0: primary, 1, 2,...)

xshift
yshift

int xshift $ 0,
yshift $ 0

0 number of pixels to shift
to the right/to the top

rotangle double any -1.0 sets the ESO OCS ROT
OFFANGLE keyword in
the primary header
(CCW)

topcrop
bottomcrop
leftcrop
rightcrop

int topcrop $ 0,
bottomcrop $ 0,
leftcrop $ 0,
rightcrop $ 0

0 number of rows or
columns to crop

mainkey
subkey

string - Additional keywords for
primary or subheaders
(optional)

valid string Specify which IFUs are
active. Either empty
string or string with 8
elements (ones or zeros)
e.g: [1;0;1;0;0;...;1]

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

133 of 174

(optional)
objects string (STD only): Specify

which IFUs contain
objects. Either empty
string or string with 8
elements (ones or zeros)
e.g: [1;0;1;0;0;...;1]
(optional)

date string (STD only): Specify the
date to save into DATE-
OBS e.g:
[2010-01-
31T11:53:15.9789]
(optional)

filter string “H”, “HK”, “IZ”, “K”,
“YJ”

- -

grating string “H”, “HK”, “IZ”, “K”,
“YJ”

- -

--objects defines if IFUs contain object or sky
--date sets theDATE-OBS keword in the primary header
--filter sets the filter type for all extensions
--grating sets the grating type for all extensions

7.3.1.6 Output Frames
KMOS type DO Category Comments
RAW, F2D,
B2D, F3I, F2I,
F1I, F1S, F1L or
F2L

depending on --type parameter Stacked KMOS FITS file

7.3.1.7 Examples
#!/bin/bash

darkpath=raw_data/darksim.fits
flatpath=raw_data/flatsim.fits
arcpath=raw_data/arcsim.fits
skypath=raw_data/skysim.fits
specsimpath=raw_data/specsim.fits
stdpath=raw_data/stdsim.fits

extension=0
valid="1;1;1;1;1;1;1;1"
filter="H"
grating="H"
rotangle=0.0

sub_key="ESO DET CHIP GAIN;double;1.1;ESO DET CHIP RON;double;0.1"

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

134 of 174

main_key_arc="ESO INS LAMP1 ST;bool;1"

DARK BIAS
esorex kmo_dev_setup --type=DARK --rotang=$rotangle --ext=$extension
 --valid=$valid $darkpath

DARK MASTER
esorex kmo_dev_setup --type=DARK_MASTER --rotang=$rotangle
 --ext=$extension --valid=$valid
 --subkey="$sub_key" $darkpath

FLAT_ON
esorex kmo_dev_setup --type=FLAT_ON --rotang=$rotangle --ext=$extension
 --valid=$valid --filt=$filter --grat=$grating
 --subkey="$sub_key" $flatpath

FLAT_OFF
esorex kmo_dev_setup --type=FLAT_OFF --rotang=$rotangle
 --ext=$extension --valid=$valid --filt=$filter
 --grat=$grating $darkpath

ARC_ON
esorex kmo_dev_setup --type=ARC_ON --rotang=$rotangle --ext=$extension
 --valid=$valid --filt=$filter --grat=$grating
 --mainkey="$main_key_arc" --subkey="$sub_key"
 $arcpath

ARC_OFF
esorex kmo_dev_setup --type=ARC_OFF --rotang=$rotangle --ext=$extension
 --valid=$valid --filt=$filter --grat=$grating
 --subkey="$sub_key" $darkpath

SKY
esorex kmo_dev_setup --type=SKY --rotang=$rotangle --ext=$extension
 --valid=$valid --filt=$filter --grat=$grating
 $skypath

SPECSIM
esorex kmo_dev_setup --type=GENERIC --rotang=$rotangle --ext=$extension
 --valid=$valid --filt=$filter --grat=$grating
 $specsimpath

STD OBJ
esorex kmo_dev_setup --type=STD --rotang=$rotangle --ext=$extension
 --valid=$valid --date="2011-01-12T11:10:00.0000"
 --objects="0;1;0;0;1;0;0;0" --filt=$filter
 --grat=$grating --subkey="$sub_key" $stdpath
mv std_123.fits std_obj_123.fits

STD SKY

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

135 of 174

esorex kmo_dev_setup --type=STD --rotang=$rotangle --ext=$extension
 --valid=$valid --date="2011-01-12T11:12:00.0000"
 --objects="0;0;0;0;0;0;0;0" --filt=$filter
 --grat=$grating --subkey="$sub_key" $skypath
mv std_123.fits std_sky_123.fits

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

136 of 174

7.3.2 kmo_fits_check:
Check FITS files

Recipe name used in recipe/function uses recipe/function
kmo_fits_check - -

Check contents of a KMOS fits-file.

7.3.2.1 Description
Recipe to print information on FITS files, contained data/noise values or header keywords of all
extensions of a fits file, preferably a KMOS fits-file (RAW, F1I, F2I, F3I, F2D etc.). This recipe
is intended for debugging purposes only.
By default a short summary is printed.
The following data types of keywords are recognized: bool, char, double, float, int, long, string
As input one fits-file is accepted, no output frame is generated.

Basic parameters:
--h
With this parameter just the header keywords are printed:

–1 prints the primary header and the headers of all the extensions
0 prints just the primary header
1 prints the header of the first extension etc.

--d
With this parameter just the data (or depending on the extension: noise) is printed:

–1 prints the primary header and the headers of all the extensions
0 prints data of the primary header which is empty for KMOS FITS frames
1 prints the data/noise of the first extension etc.

This parameter should only be used with very small datasets, otherwise the screen will be flooded
with numbers.

7.3.2.2 Flow Chart
None

7.3.2.3 Input Frames
KMOS type DO category Amount Comments
any none or any 1 any FITS file (also non-

KMOS frames)

This recipe also accepts also a path to a FITS file instead of a sof-file.

7.3.2.4 Fits Header Keywords
None specific

7.3.2.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

137 of 174

h int -1 # h -2 (optional)
d int -1 # d -2 (optional)

The defaults of –2 for h and d lead to printing the short summary. This value can’t be provided
manually.

7.3.2.6 Output Frames
None

7.3.2.7 Examples
print summary:
$ esorex kmo_fits_check test.fits

print all headers:
$ esorex kmo_fits_check --h=-1 test.fits

print primary header:
$ esorex kmo_fits_check --h=0 test.fits

print primary data extension (which should always be empty for KMOS FITS files):
$ esorex kmo_fits_check --d=0 test.fits

print 5th data extension:
$ esorex kmo_fits_check --d=5 test.fits

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

138 of 174

7.3.3 kmo_fits_stack:
Creating a KMOS-conform FITS file manually

Recipe name used in recipe/function uses recipe/function
kmo_fits_stack - -

Creates KMOS conform fits-files.

7.3.3.1 Description
FITS files to be processed by the KMOS pipeline have to meet certain conditions. This recipe is
intended to provide to the user a simple way to test the pipeline with own data, which wasn't
produced by KMOS itself.

The input set of frame is checked for integrity (do all the frames have the same size, do they
correspond to the desired output type, is there the correct number of files). Then an empty main
header is written with desired keywords. A keyword consists of the name, data type and value.
Additional keywords can be added either to the empty primary header or to all sub headers.

Basic parameters:
--category
Set to TRUE if DFS header keywords should be generated. In this case the --subkey
parameter is ignored and “kmos_” is added as prefix to created filenames.

--type
Depending on the type of the FITS file to create different combinations of frames have to be
provided:

• RAW
exactly 3 files tagged as DATA

• F2D
exactly 3 files tagged as DATA or
exactly 6 files tagged alternating as DATA and NOISE (beginning with DATA)

• B2D
exactly 3 files tagged as BADPIX

• F1I, F2I, F3I
as many DATA frames as wanted (at least one) or
as many DATA and NOISE frames as wanted (at least one of each, the number of
DATA frames has to match the one of NOISE frames)

• F1S
exactly 1 file tagged as DATA

• F1L
exactly 1 file tagged as DATA (either plain text or binary fits table)

• F2L
exactly 1 file tagged as DATA (either plain text or binary fits table)

--mainkey
--subkey

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

139 of 174

Additional keywords can be added either to the empty primary header or to all sub headers.
Provided keywords must have following form: "keyword;type;value;keyword;type;value" (no
spaces inbetween!)
Allowed values for type are: string, int, float, double, bool

--valid
With the –valid parameter one can specifiy which values should be handled as invalid by the
pipeline. The keyword ESO OCS ARMi NOTUSED will be set accordingly.

7.3.3.2 Flow Chart
None

7.3.3.3 Input Frames
KMOS type DO category Amount Comments
none STACK_DATA !1 data frames

KMOS type DO category Amount Comments
none STACK_DATA !1 data frames
none STACK_NOISE !1 noise frames

(same number as data
frames)

KMOS type DO category Amount Comments
none STACK_BADPIX 3 badpixel frames

7.3.3.4 Fits Header Keywords
The keywords already present in the provided input FITS files are copied to the output KMOS
FITS files. Additional keywords can be added using the --mainkey and --subkey
parameters. The keywords provided with mainkey go into the empty primary header, the subkey
keywords go into ALL subsequent extensions.

The mainkey and subkey parameters consist of one or several triples. A triple has following order:
keyword, type and value. The strings mustn’t contain any spaces, the entries have to be separated
by a semicolon (;) since entries also can contain commas. Triples are also separated by
semicolons.

Example:
mainkey = “DIT;double;1.0;EXPTIME;double; 519.9;WEATHER;string;very_sunny”
subkey = “CHIP1;bool;1.0;”

Valid types are: string, int, float, double and bool.

7.3.3.5 Configuration Parameters
Basic parameters

Name Type valid values Default Comments
type string “RAW”, “F2D”, “B2D”, “” (mandatory)

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

140 of 174

“F3I”, “F2I”, “F1I”,
“F1S”, “F1L”, “F2L”

filename string Any “fits_stacker” suffix “.fits” will be
added
(optional)

mainkey string “keyword;type;value” “” (optional)
subkey string “keyword;type;value” “” (optional)
valid string empty string or

string with 24 elements
(either ones or zeros), e.g.
[1;0;1;1;1;0;0;0;…;1]

“” (optional)

7.3.3.6 Output Frames
KMOS type DO Category Comments
RAW, F2D,
B2D, F3I, F2I,
F1I, F1S, F1L or
F2L

FITS_STACKER Stacked KMOS FITS file

7.3.3.7 Examples
$ esorex kmo_fits_stack --type=”RAW” --filename=”my_raw” raw.sof

with raw.sof containing:
data1.fits STACK_DATA
data2.fits STACK_DATA
data3.fits STACK_DATA

$ esorex kmo_fits_stack --type=”F2D” --filename=”my_f2d”

 --mainkey=”EXPTIME;double;3.0” f2d.sof

with f2d.sof containing:
data1.fits STACK_DATA
data2.fits STACK_DATA
data3.fits STACK_DATA

$ esorex kmo_fits_stack --type=”F1I” --filename=”my_f1i” f1i.sof

with f1i.sof containing:
data_vector1.fits STACK_DATA
noise_vector1.fits STACK_NOISE
data_vector2.fits STACK_DATA
noise_vector2.fits STACK_NOISE

$ esorex kmo_fits_stack --type=”B2D” --filename=”my_badpix” badpix.sof

with badpix.sof containing:
badpix1.fits STACK_BADPIX
badpix2.fits STACK_BADPIX

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

141 of 174

badpix3.fits STACK_BADPIX

$ esorex kmo_fits_stack --type=”F1S” --filename=”my_f1s” f1s.sof

with f1s.sof containing:
data_vector.fits STACK_DATA

$ esorex kmo_fits_stack --type=”F1L” --filename=”my_f1l” f1l.sof

with f1l.sof containing:
two_columns_ascii.txt STACK_DATA

$ esorex kmo_fits_stack --type=”F2L” --filename=”my_f2l” f2l.sof

with f2l.sof containing:
three_columns_ascii.txt STACK_DATA

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

142 of 174

8 Data Reduction Library Functions
All recipes described in Section 7 are implemented as functions with similar names inside the
library. Their descriptions have not been repeated here. By implementing them as functions
allows one to create an appropriate simple wrapper so that they can be used either as recipe
plugins or for use within KMCLIPM, without having to repeat the functional part of the code.

In addition, there are a few extra functions, which are defined as such because they are used
repeatedly in various recipes or fulfil another special task. These are the functions described
explicitly in this chapter.

8.1 Acquisition Reduction for RTD
Recipe name used in recipe/function uses recipe/function
kmclipm_rtd_image - kmo_make_image

kmo_fit_profile
kmo_reconstruct

kmclipm_rtd_image is intended to be used only by the Instrument Control Software (ICS).
In order to use it the function

kmclipm_set_cal_path(const char *path, int test_mode)
has to be called once, defining the path where the xcal-, ycal- and lcal-calibration files are stored
and whether we are in test mode (default: test_mode = FALSE) or not.
The calibration files are generated using the recipes kmo_flat and kmo_wave_cal (see Sec. 7.1.2
and 7.1.3) and have manually to be copied to the specified directory in order to use the real time
display (RTD) in ICS.
To create the necessary raw frames for the above mentionned recipes, the templates

KMOS_spec_cal_calunit and
KMOS_spec_cal_wave

have to be executed. There the number of rotator offsets has to be specified (for the moment
beeing 6 offsets are recommended). So we get for 5 bands and 6 angles and 3 different calibration
files a total of 90 calibration files.
The naming of the calibration files follows this convention:
e.g. xcal_xxx_yyy_z.fits
x: grating for every detector
y: filter for every detector
z: rotator angle

8.1.1 Description

In general, only a few bright stars are observed with a few IFUs (with short DIT). The other IFUs
point to faint objects that will not necessarily be visible with the short DIT used for acquisition.
Thus a vector is provided indicating the IFUs, which are to be processed. However, in some
cases, the calculations and image reconstruction will be performed for all IFUs (initial tests,
calibrations, etc).

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

143 of 174

8.1.2 Flow Chart

Figure 45: Flow chart of the recipe kmo_rtd_image

The processing steps are:

1. From the raw object frame and the master dark (or a specified sky frame) the desired IFU
frame is extracted.

2. The two IFU frames are subtracted.
3. The resulting frame is reconstructed into a cube using the bad pixel mask, the spectral

curvature calibration frame and the wavelength calibration frame.
4. The cube is collapsed along the spectral axis within specified wavelength range. If

required wavelengths across OH sky emission lines are omitted.
5. If automatic centres are required, they will be extracted now. The resulting x- & y-values

are stored in a vector.
6. The steps above are repeated for each IFU to process.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

144 of 174

7. The resulting images are merged into a single combined image.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

145 of 174

8.2 Combine frames using pixel rejection
Recipe name used in recipe/function uses recipe/function
kmclipm_combine_frames kmo_dark

kmo_flat
kmo_illumination

-

Combines data frames with or without noise and either (re)calculates or propagates noise.

8.2.1 Description

This function is always used when several input frames have to be combined into one. For each
pixel position the pixel values at this position of every frame are put into a vector. This vector is
to be averaged according one of the following methods available:

• Kappa-sigma clipping
Any value of the vector which deviates significantly will be rejected. This method is
iterative.
(value > mean + $ * pos_rejection_threshold or
value < mean - $ * neg_rejection_threshold)
In the first iteration median and percentile level are used.

• Min-max clipping
The specified number of minimum and maximum values of the vector will be rejected.
This method is applied once.

• Average
The average of all values of the vector is calculated.

• Median
The median of all values of the vector is calculated.

• Sum
The sum of all values of the vector is calculated.

The above mentionned methods act all the same regardless the number of input data frames. For
reasonable noise estimations it is recommended to provide at least three or more frames. If less
than three frames are provided the noise estimation is performed as depicted in the table below:

 !3 frames 2 frames 1 frame
 avgdata = combine(datain) avgdata = combine (datain) avgdata = datain

with
noisein

for ‘median’ method:

avgnoise = stdevmedian (datain)
n

for all other methods:

avgnoise =

for ‘sum’ method:

avgnoise = noisein1
2 +noisein2

2

2

for all other methods:

avgnoise = 1
2

noisein1
2 +noisein2

2

2

avgnoise = noisein

 avgdata = combine (datain) avgdata = combine (datain) avgdata = datain

stdev(datain)
n

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

146 of 174

w/o
noisein avgnoise = avgnoise =

avgnoise = stdev(datain)

Table 1 The function combine() stands for kmclipm_combine_frames() and handles the input
data as described above. n is the number of input frames.

stdev(datain)
n

datain1 ! datain2
2

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

147 of 174

8.2.2 Flow Chart

Figure 46: Flow chart for kmclipm_combine_frames
The processing steps are:

1. Depending on the method chosen the frames will be combined differently:

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

148 of 174

a. Kappa-sigma clipping
i. Two thresholds are calculated

ii. All pixels above or below the thresholds are rejected
iii. These steps are repeated as many times as desired

b. Min-max clipping
i. The desired number of minimum and maximum values is clipped

c. Average
i. For all pixel positions the average of the values is calculated

d. Median
i. For all pixel positions the median of the values is calculated

e. Sum
i. For all pixel positions the sum of the values is calculated

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

149 of 174

8.3 Scientific reconstruction of a data cube
Recipe name used in recipe/function uses recipe/function
kmo_reconstruct_sci kmo_std_star

kmo_sci_red
kmo_noise_map
kmo_reconstruct

Reconstructing cubes using noise estimation and master flat frame.

8.3.1 Description

This function reconstructs a data cube in a scientific manner, taking into account a sky or dark
frame and a flat frame, as opposed to kmo_reconstruct which just stacks up the slitlets to form a
data cube. The function gets the whole frames as input and extracts the part with the desired IFU
and returns the reconstructed cube with noise. The flow chart doesn’t show the splitting of the
frames into IFU frames.
This function is used in the higher level recipe kmo_sci_red.

8.3.2 Flow Chart

Figure 47: Flow chart for kmo_reconstruct_sci

The processing steps are:

1. The data frame and the sky (or dark) frame are subtracted and divided by the master flat
field.

2. The noise of the data frame and the sky (or dark) frame are generated using
kmo_noise_map.

3. The noise of the three frames (the noise of the master flat frame has already been
calculated in kmo_flat) is combined according the operations performed in step 1.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

150 of 174

4. The resulting 2D data and noise frame are reconstructed into a cube using the three
calibration frames

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

151 of 174

PART III: DRS ADVANCED TOOLS

This collection of recipes is not part of the calibration and science reduction pipeline. The
functionally complex recipes are provided as IDL code since user interaction is required or plots
are generated. As well the input parameters have to be chosen carefully in order to achieve a
useful output.

9 IDL functions

9.1 kmo_bkg_sub:
Subtracting Background

Recipe name
kmo_bkg_sub

Perform a additional background subtraction cycle using one of several methods.

9.1.1 Description

TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

152 of 174

9.1.2 Flow Chart

Figure 48: Flow chart of the recipe kmo_bkg_sub

The processing steps are:

1. If a mask is provided the calculation will be restricted to the specified spatial regions
(typically, background regions if the mask is created with kmo_sky_mask).

2. Three subtraction methods are available:

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

153 of 174

a. “constant”
i. The mode of the selected spatial region is calculated.

ii. The mode is subtracted pixelwise from the input cube.
b. “slice”

i. The mean (with rejection) of the selected region of each spatial slice is
calculated.

ii. The mean is subtracted pixelwise from the corresponding spatial slice.
c. “slitlet”

i. The median (with rejection) of the selected region of each slitlet is
calculated.

The median is subtracted pixelwise from the corresponding input slitlet.

9.1.3 Input Frames

TBD
9.1.4 Fits Header Keywords

Primary Header

TBD

Sub Headers

TBD
9.1.5 Configuration Parameters

TBD
9.1.6 Output Frames

TBD
9.1.7 Examples

TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

154 of 174

9.2 kmo_cosmic:
Detecting Deviant Pixels

Recipe name
kmo_cosmic

Clean a cube/frame of hot/cold/bad pixels and cosmic ray events.

9.2.1 Description

TBD
9.2.2 Flow Chart

Figure 49: Flow chart of the recipe kmo_cosmic

The processing steps are:

1. A mask indicating deviant pixels (e.g. cosmic ray hits, ‘cold’ and ‘hot’ pixels etc.) will be
generated using the method described in [RD09].

2. The generated bad pixel mask is combined with the optional bad pixel mask belonging to
the input data.

If requested, the deviant pixels are replaced using simple linear interpolation from neighbouring
pixels. Note that the usual procedure would be to use this recipe to flag the bad pixels so that they

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

155 of 174

can be ignored during the cube reconstruction. However, other applications may require that this
recipe correct the bad pixels too.

9.2.3 Input Frames

TBD
9.2.4 Fits Header Keywords

Primary Header

TBD

Sub Headers

TBD
9.2.5 Configuration Parameters

TBD
9.2.6 Output Frames

TBD
9.2.7 Examples

TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

156 of 174

9.3 kmo_extract_moments:
Extracting Flux, Velocity and Dispersion Maps

Recipe name
kmo_ extract_moments

Generate maps of the flux, velocity, and dispersion of emission or absorption lines.

9.3.1 Description

TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

157 of 174

9.3.2 Flow Chart

Figure 50: Flow chart of the recipe kmo_extract_moments

The main processing steps are summarised here:

1. First the cube is cropped to the desired spatial and spectral range.
2. Then the continuum is fitted to each spatial pixel.
3. Three extraction methods for moment calculation are available:

a. “calc”
The mathematical moments and uncertainties are calculated.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

158 of 174

b. “fit”
i. A Gaussian is fitted to the spectrum at each spaxels.

ii. The properties of the Gaussian deliver the required moments. The
uncertainties are derived through Monte Carlo techniques.

c. “convolve”
i. A template of an unresolved line profile (e.g. an arc or sky line) is used to

find the best parameters for a Gaussian, by adjusting its parameters to
minimise the difference between the data and the convolution of the
template with the Gaussian.

ii. The properties of the Gaussian deliver the required moments.
The uncertainties are found via further minimisations.

9.3.3 Input Frames

TBD
9.3.4 Fits Header Keywords

Primary Header

TBD

Sub Headers

TBD
9.3.5 Configuration Parameters

TBD
9.3.6 Output Frames

TBD
9.3.7 Examples

TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

159 of 174

9.4 kmo_extract_pv:
Position-Velocity Diagrams

Recipe name
kmo_extract_pv

Extract a position velocity diagram from a datacube.

9.4.1 Description

TBD
9.4.2 Flow Chart

Figure 51: Flow chart of the recipe kmo_extract_pv

The processing steps are:

1. The cube is rotated so that the desired slit is oriented vertically and centered.
2. The cube is cropped so that the cube consists only of the pseudoslit itself.

For each pixel in the y/z-plane (spatial orientation of the pseudoslit and wavelength), the width of
the pseudoslit is integrated.

9.4.3 Input Frames

TBD
9.4.4 Fits Header Keywords

Primary Header

TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

160 of 174

Sub Headers

TBD
9.4.5 Configuration Parameters

TBD
9.4.6 Output Frames

TBD
9.4.7 Examples

TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

161 of 174

9.5 kmo_fit_continuum:
Fitting the Continuum

Recipe name
kmo_fit_continuum

Fit a polynomial to the spectral shape of the continuum (rejecting emission/absorption lines) for
each spatial position in a cube.

9.5.1 Description

TBD
9.5.2 Flow Chart

Figure 52: Flow chart of the recipe kmo_fit_continuum

The processing steps are:

1. The desired wavelength ranges are selected.
2. The continuum is fitted to the specified ranges of each vector (typically a spectrum)

independently. The fitting is performed iteratively, rejecting pixels above and below the
defined threshold levels. Normally the function is fitted along the spectral axis, but can in
principle also be fitted into any desired dimension (see kmo_bkg_sub in Section 9.1)

9.5.3 Input Frames

TBD
9.5.4 Fits Header Keywords

Primary Header

TBD

Sub Headers

TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

162 of 174

9.5.5 Configuration Parameters

TBD
9.5.6 Output Frames

TBD
9.5.7 Examples

TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

163 of 174

9.6 kmo_sky_tweak:
Second Order Sky Subtraction

Recipe name used in recipe/function uses recipe/function
kmo_sky_tweak kmo_sci_red kmo_arithmetic

kmo_extract_spec
kmo_stats
kmo_sky_mask
kmo_shift
kmo_fit_profile

Perform an additional sky subtraction cycle.

9.6.1 Description

The recipe, as implemented, is divided into 4 main processing steps: removal of thermal background,
compensation of instrumental flexure (Figure 53), compensation of vibrational variations, and
compensation of rotational variations (Figure 54).

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

164 of 174

9.6.2 Flow Chart

Figure 53: Flow chart of the recipe kmo_sky_tweak (Part 1)

The processing steps of Figure 53 are:

1. Identify spaxels with least flux in object cube (kmo_sky_mask).
2. Sum spectra from these spaxels in both object and sky cubes separately.
3. Fit a blackbody function to the underlying continuum in the sky spectrum (the thermal

background).
4. The fitted function is subtracted from both the original object and sky cubes and from the

extracted object and sky spectra.
5. The spectra with removed thermal background are compared with regard to offsets in

bright OH lines. The sky cube (with removed thermal background) is shifted accordingly.
Note that for KMOS, the default is for spectral flexure to already be corrected. However
there may be some situations where this is not so, in which case this step is carried out
here.

6. Again the spectrum of the processed object and sky cubes are extracted using the same
mask as in step 1.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

165 of 174

Figure 54: Flow chart of the recipe kmo_sky_tweak (Part 2)

The processing steps of Figure 54 are:

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

166 of 174

1. To correct vibrational variations, the spectra are divided into segments along the
wavelength axis. For each segment the spectral vectors of bright OH lines are extracted.

2. The sky spectrum is scaled to match the object spectrum in each spectral segment.
3. The scalings of each spectral segment are combined to a single scaling function which is

applied to the sky spectrum.
4. To correct rotational variations, steps 7 to 9 are repeated.
5. The two scaling functions are multiplied.
6. The resulting scaling function is multiplied with the compensated sky cube which in turn

is subtracted from the compensated object cube.

9.6.3 Input Frames

TBD
9.6.4 Fits Header Keywords

Primary Header

TBD

Sub Headers

TBD
9.6.5 Configuration Parameters

TBD
9.6.6 Output Frames

TBD
9.6.7 Examples

TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

167 of 174

9.7 kmo_voronoi:
Smoothing with Optimal Voronoi Tessellations

Recipe name
kmo_voronoi

Perform adaptive binning based on the local signal-to-noise ratio and apply this to either an entire
datacube, another frame, or the signal frame provided.

9.7.1 Description

TBD
9.7.2 Flow Chart

Figure 55: Flow chart of the recipe kmo_voronoi

The processing steps are (as described in [RD11]):

1. Search the pixel with the maximum value in the input signal frame.
2. Accrete neighbouring pixels based on criteria of the group’s roundness and signal-to-noise

until the minimum of signal-to-noise is reached. Repeat until all pixels are in groups.
3. Use the centroids as the initial input to a centroidal voronoi tessellation algorithm, which

optimises the groups.

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

168 of 174

Apply the binning to the input signal image. Optionally the binning is also applied to other data
frames or to the data cube of which the data frame and noise map stem from. The format of the
output frame will be the same as the input frame. The value assigned to each pixel will be that of
the bin to which it belongs.

9.7.3 Input Frames

TBD
9.7.4 Fits Header Keywords

Primary Header

TBD

Sub Headers

TBD
9.7.5 Configuration Parameters

TBD
9.7.6 Output Frames

TBD
9.7.7 Examples

TBD

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

169 of 174

Appendix A Data Processing Tables

Recipe Template Classification Keywords Calibration Database Data Products QC1 Parameters
kmo_dark KMOS_spec_cal_dark DO cat = DARK

DPR.TYPE = DARK
DPR.CATG = CALIB
DPR.TECH = IMAGE

- Master Dark frame
 Preliminary Bad pixel mask
 Dark Current
 Read noise

 Mean Bias
 Mean Read Noise
 Number of bad pixels

 Mean Dark Current

Processing: iterative mean of frames; identify bad pixels
FITS keywords: DIT, MINDIT

kmo_flat KMOS_spec_cal_calunit DO cat = FLAT_ON
DPR.TYPE = FLAT,LAMP
DPR.CATG = CALIB
DPR.TECH = SPECTRUM

DO cat = FLAT_OFF
DPR.TYPE = FLAT,OFF
DPR.CATG = CALIB
DPR.TECH = IMAGE

Preliminary Bad pixel mask
 (from kmo_dark)

 Master Flat
 Spectral Curvature Calibration frames
 Final Bad pixel mask

 Mean shift of slitlet edges
 RMS shift of slitlet edges
 Lamp efficiency
 Number of saturated pixels in flatfield
 Mean S/N in flatfield
 Mean change in 0th order coefficients
 RMS change in 0th order coefficients
 Mean change in 1st order Y coefficients
 RMS change in 1st order Y coefficients

Processing: subtract mean of on & off frames; identify pixels that are bad or not illuminated; fit functions to spectral traces; generate frame where the pixel value corresponds to the spatial position (in
arcsec) of that pixel
FITS keywords: INS.FILTi.NAME, INS.LAMP3.ST, INS.LAMP4.ST

kmo_illumination KMOS_spec_cal_skyflat DO cat = FLAT_SKY
DPR.TYPE = FLAT,SKY
DPR.CATG = CALIB
DPR.TECH = IFU

Final Bad pixel mask
Master Flat frame
Spectral Curvature Calibration frame
Wavelength Calibration frame

 Illumination Correction frame Spatial uniformity of flatfield
 Max deviation of an IFU
 identification of that IFU
 Max non-uniformity within an IFU
 identification of that IFU

Processing: average frames; reconstruct cubes; collapse to images; normalise
FITS keywords: INS.FILTi.NAME

kmo_wave_cal KMOS_spec_cal_wave DO cat = ARC_ON
DPR.TYPE = WAVE,LAMP
DPR.CATG = CALIB
DPR.TECH = SPECTRUM

DO cat = ARC_OFF
DPR.TYPE = WAVE,OFF
DPR.CATG = CALIB
DPR.TECH = IMAGE

Final Bad pixel mask
Arc line wavelength table

 Wavelength Calibration frame Arc lamp efficiency
 Number of saturated pixels in arc frame
 Spectral Resolution
 Mean change in 0th order coefficients
 RMS change in 0th order coefficients
 Mean change in 1st order Y coefficients
 RMS change in 1st order Y coefficients

Processing: subtract on & off frames; fit functions to arc line traces; generate frame where the pixel value corresponds to the wavelength (in microns) of that pixel
FITS keywords: INS.FILTi.NAME, INS.LAMP1.ST, INS.LAMP2.ST

Recipe Template Classification Keywords Calibration Database Data Products QC1 Parameters

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

170 of 174

kmo_std_star KMOS_spec_cal_std DO cat = STD
DPR.TYPE =
 OBJECT,SKY,STD,FLUX
DPR.CATG = CALIB
DPR.TECH = IFU

Final Bad pixel mask
Master flat frame
Wavelength Calibration frame
Spectral Curvature Calibration frame
Illumination Correction Frame
Model Atmospheric Transmission Spectrum
Solar Spectrum
Spectral Type Lookup Table

 Telluric Correction Spectrum
 Images of the stars
 (for seeing measurement)
 Flux Calibration
 (if star magnitude given)

 Mean Zeropoint
 Mean & Std Dev Throughput
 Mean Spatial Resolution
 Straightness of corrected trace

Processing: subtract object & sky frames; reconstruct cube; extract spectrum; correct stellar imprint; calculate flux calibration
FITS keywords: INS.FILTi.NAME, OCS.ARMi.TYPE

kmo_sci_red KMOS_spec_obs_nodtosky
KMOS_spec_obs_stare
KMOS_spec_obs_mapping

DO cat = SCIENCE
DPR.TYPE = OBJECT,SKY
DPR.CATG = SCIENCE
DPR.TECH = IFU

Final Bad pixel mask
Master flat frame
Wavelength Calibration frame
Spectral Curvature Calibration frame
Illumination Correction Frame
Telluric Correction Spectrum

Reduced Science Cube none

Processing: subtract object & sky frames; reconstruct cube; divide out telluric imprint; calibrate flux
FITS keywords: INS.FILTi.NAME, OCS.ARMi.ALPHA, OCS.ARMi.DELTA, OCS.ARMi.TYPE, OCS.ARMi.NAME

kmo_rtd_image triggered by CLIP N/A Final Bad pixel mask
Master Dark frame
Wavelength Calibration frame
Spectral Curvature Calibration frame
OH line wavelength table

Reconstructed images
 (to display on RTD)

none

Processing: subtract object & sky/dark frames; reconstruct cube; excise regions near OH lines; collapse spectral axis to create image
FITS keywords: N/A

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

171 of 174

Appendix B The KMOS data interface dictionary

The column dependency indicates that the QC parameter will be different for (i.e. depends on) each detector (‘D’), each IFU (‘I’) and/or each
bandpass (‘B’) respectively.

Table of (possibly) generated keywords by the calibration recipes of the DRS:

name header unit data
type

depen-
dency

description

HIERARCH ESO PRO ARMx NOTUSED primary - string I This keyword is only present when a recipe wasn’t able to process a specific IFU

([] IFU set inactive by <recipe_name>)
HIERARCH ESO PRO BOUND IFUi_L primary pix int I This keyword contains the left bound of the area on the detector containing IFU

i. This keyword is generated in kmo_flat and stored in the xcal-frame for every
active IFU. This information is reused when reconstructing.

HIERARCH ESO PRO BOUND IFUi_R primary pix int I This keyword contains the right bound of the area on the detector containing IFU
i. See also comment above.

Table of generated QC keywords by the calibration recipes (see section 5.1 for more detailed information):

name header unit data
type

depen-
dency

description

kmo_dark
HIERARCH ESO QC DARK extension adu double D mean value of Master Dark
HIERARCH ESO QC DARK MEDIAN extension adu double D median value of Master Dark
HIERARCH ESO QC RON extension adu double D mean value of noise of Master Dark
HIERARCH ESO QC RON MEDIAN extension adu double D median value of noise of Master Dark
HIERARCH ESO QC DARKCUR extension e-/s double D iterative mean dark current in Master Dark divided by gain
HIERARCH ESO QC BADPIX NCOUNTS extension - int D number of bad pixels in Master Dark

kmo_flat
HIERARCH ESO QC FLAT EFF extension e-/s double DB relative brightness of flatfield lamp
HIERARCH ESO QC FLAT SAT NCOUNTS extension - int DB number of saturated pixels in Master Flat

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

172 of 174

HIERARCH ESO QC FLAT SN extension - double DB signal-to-noise in Master Flat
HIERARCH ESO QC GAP MEAN extension pix double DB mean gap width between slitlets
HIERARCH ESO QC GAP SDV extension pix double DB standard deviation of gap width between slitlets
HIERARCH ESO QC GAP MAXDEV extension pix double DB maximum deviation of gap width between slitlets
HIERARCH ESO QC SLIT MEAN extension pix double DB mean slitlet width
HIERARCH ESO QC SLIT SDV extension pix double DB standard deviation of slitlet width
HIERARCH ESO QC SLIT MAXDEV extension pix double DB maximum deviation of slitlet width
HIERARCH ESO QC BADPIX NCOUNTS extension - int D number of bad pixels in Master Flat

kmo_wave_cal
HIERARCH ESO QC ARC AR EFF extension e-/s double B relative brightness of argon arclamp
HIERARCH ESO QC ARC NE EFF extension e-/s double B relative brightness of neon arclamp
HIERARCH ESO QC ARC SAT NCOUNTS extension - int B number of saturated pixels in arc frame
HIERARCH ESO QC ARC AR POS MEAN extension km/s double DB mean of all Argon reference line position offsets (measured vs. expected)
HIERARCH ESO QC ARC AR POS MAXDIFF extension km/s double DB maximum offset of measured vs. expected Argon reference line position
HIERARCH ESO QC ARC AR POS MAXDIFF ID extension - int DB identification of the IFU which has the maximum offset
HIERARCH ESO QC ARC AR POS STDEV extension km/s double DB mean standard deviation of position offset for Argon reference line
HIERARCH ESO QC ARC AR POS 95%ILE extension km/s double DB mean 95%ile of position offset for Argon reference line
HIERARCH ESO QC ARC AR FWHM MEAN extension km/s double DB mean of FWHM for Argon reference line
HIERARCH ESO QC ARC AR FWHM STDEV extension km/s double DB mean stdev of FWHM for Argon reference line
HIERARCH ESO QC ARC AR FWHM 95%ILE extension km/s double DB mean 95%ile of FWHM for Argon reference line
HIERARCH ESO QC ARC NE POS MEAN extension km/s double DB mean of all Neon reference line position offsets (measured vs. expected)
HIERARCH ESO QC ARC NE POS MAXDIFF extension km/s double DB maximum offset of measured vs. expected Neon reference line position
HIERARCH ESO QC ARC NE POS MAXDIFF ID extension - int DB identification of the IFU which has the maximum offset
HIERARCH ESO QC ARC NE POS STDEV extension km/s double DB mean standard deviation of position offset for Neon reference line
HIERARCH ESO QC ARC NE POS 95%ILE extension km/s double DB mean 95%ile of position offset for Neon reference line
HIERARCH ESO QC ARC NE FWHM MEAN extension km/s double DB mean of FWHM for Neon reference line
HIERARCH ESO QC ARC NE FWHM STDEV extension km/s double DB mean stdev of FWHM for Neon reference line
HIERARCH ESO QC ARC NE FWHM 95%ILE extension km/s double DB mean 95%ile of FWHM for Neon reference line

kmo_illumination
HIERARCH ESO QC SPAT UNIF primary adu double B uniformity across all illumination corrections
HIERARCH ESO QC SPAT MAX DEV ID primary - int B identification of the IFU whose illumination correction deviates most from unity
HIERARCH ESO QC SPAT MAX DEV primary adu double B value of this deviation
HIERARCH ESO QC SPAT MAX NONUNIF ID primary - int B identification of the IFU which has the most non-uniform illumination correction
HIERARCH ESO QC SPAT MAX NONUNIF primary adu double B standard deviation of the illumination correction for this IFU

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

173 of 174

kmo_std_star
HIERARCH ESO QC ZPOINT extension mag double DB zeropoint (magnitude) [stored in extension headers of telluric]
HIERARCH ESO QC THRUPUT extension - double DB throughput of KMOS (i.e. ratio of number of photons detected to number

expected from the standard star) [stored in extension headers of telluric]
HIERARCH ESO QC THRUPUT MEAN primary - double B mean of throughput of all detectors [stored in primary header of telluric]
HIERARCH ESO QC THRUPUT SDV primary - double B standard deviation of throughput of all detectors [stored in primary header of

telluric]
HIERARCH ESO QC SPAT RES extension - double DB spatial resolution (FWHM) [stored in extension headers of std_image]
HIERARCH ESO QC STD TRACE extension pix double DB a measure of how straight the corrected trace of a star is (i.e. how well the

spectral curvature has been corrected) [stored in extension headers of std_image]
HIERARCH ESO QC NR STD STARS primary - int I the number of standard stars in a standard star exposure [stored in primary

headers of all output frames]

Table of generated keywords by kmo_fit_profile (see section 7.2.6 for more detailed information):

name header unit data
type

depen-
dency

description

HIERARCH ESO PRO FIT MAX PIX extension pix double I Position of the maximum (1D fit)
HIERARCH ESO PRO FIT MAX PIX X extension pix double I Position of the maximum in x (2D fit)
HIERARCH ESO PRO FIT MAX PIX Y extension pix double I Position of the maximum in y (2D fit)
HIERARCH ESO PRO FIT CENTROID extension pix double I Position of the centroid (1D fit)
HIERARCH ESO PRO FIT CENTROID X extension pix double I Position of the centroid in x (2D fit)
HIERARCH ESO PRO FIT CENTROID Y extension pix double I Position of the centroid in y (2D fit)
HIERARCH ESO PRO FIT RADIUS X extension pix double I Radius in x of fitted 2D profile
HIERARCH ESO PRO FIT RADIUS Y extension pix double I Radius in y of fitted 2D profile
HIERARCH ESO PRO FIT OFFSET extension adu double I Background/offset
HIERARCH ESO PRO FIT INTENS extension adu double I Intensity of the function
HIERARCH ESO PRO FIT SIGMA extension pix double I Sigma of the gauss function
HIERARCH ESO PRO FIT ALPHA extension - double I Alpha of fitted Moffat function
HIERARCH ESO PRO FIT BETA extension - double I Beta of fitted Moffat function
HIERARCH ESO PRO FIT SCALE extension adu double I Scale of fitted Lorentz function
HIERARCH ESO PRO FIT ROT extension deg double I Rotation angle (clockwise)
HIERARCH ESO PRO FIT ERR CENTROID extension pix double I Error in position of the centroid (1D fit)
HIERARCH ESO PRO FIT ERR CENTROID X extension pix double I Error in position of the centroid in x (2D fit)
HIERARCH ESO PRO FIT ERR CENTROID Y extension pix double I Error in position of the centroid in y (2D fit)

Data Reduction Library Design & Manual

Doc No: VLT-MAN-KMO-146611-007
Version: 2.4

Author R. Davies, A. Agudo Berbel ,
N. Förster Schreiber,

Date: 11.07.2012

174 of 174

HIERARCH ESO PRO FIT ERR RADIUS X extension pix double I Error in radius in x of fitted 2D profile
HIERARCH ESO PRO FIT ERR RADIUS Y extension pix double I Error in radius in y of fitted 2D profile
HIERARCH ESO PRO FIT ERR OFFSET extension adu double I Error in background/offset
HIERARCH ESO PRO FIT ERR ROT extension deg double I Error in rotation angle (clockwise)
HIERARCH ESO PRO FIT ERR INTENS extension adu double I Error in intensity of the function
HIERARCH ESO PRO FIT ERR SIGMA extension pix double I Error in sigma of the gauss function
HIERARCH ESO PRO FIT ERR ALPHA extension - double I Error in alpha of fitted Moffat function
HIERARCH ESO PRO FIT ERR BETA extension - double I Error in beta of fitted Moffat function
HIERARCH ESO PRO FIT ERR SCALE extension adu double I Error in scale of fitted Lorentz function
HIERARCH ESO PRO FIT RED CHISQ extension - double I Reduced chi square error of the fit

___oooOOOooo___

